Advertisement

On Small Size Approximation Models

  • Alexander A. Razborov
Part of the Algorithms and Combinatorics book series (AC, volume 13)

Summary

In this paper we continue the study of the method of approximations in Boolean complexity. We introduce a framework which naturally generalizes previously known ones. The main result says that in this framework there exist approximation models providing in principle exponential lower bounds for almost all Boolean functions, and such that the number of testing functional is only singly exponential in the number of variables.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Alon and R. Boppana. The monotone circuit complexity of Boolean functions. Combinatorica 7(1):1–22, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    D. A. Barrington. A note on a theorem of Razborov. Technical report, University of Massachusetts, 1986.Google Scholar
  3. 3.
    R. B. Boppana and M. Sipser. The complexity of finite functions. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, uol. A (Algorithms and Complexity) chapter 14, pages 757–804. Elsevier Science Publishers B.V. and The MIT Press, 1990.Google Scholar
  4. 4.
    M. Karchmer. On proving lower bounds for circuit size. In Proceedings of the 8th Structure in Complexity Theory Annual Conference pages 112–118, 1993.Google Scholar
  5. 5.
    M. Karchmer and A. Wigderson. Characterizing non-deterministic circuit size. In Proceedings of the 25th Annual ACA1 Symposium on the Theory of Computing pages 532–540, 1993.Google Scholar
  6. 6.
    M. Karchmer and A. Wigderson. On span programs. In Proceedings of the 8 th Structure in Complexity Theory Annual Conference pages 102–111, 1993.Google Scholar
  7. 7.
    C. Meinel. Modified Branching Programs and Their Compuiatiotuil Power, Lecture Notes in Computer Science 370. Springer-Verlag, New York/Berlin, 1989.Google Scholar
  8. 8.
    K. Nakayama and A. Maruoka. Loop circuits and their relation to Razborov’s approximation model Manuscript, 1992.Google Scholar
  9. 9.
    A. Razborov. On the method of approxmation. In Proceedings of the 21 si ACM Symposium on Theory of Computing pages 167–176, 1989.Google Scholar
  10. 10.
    A. Razborov. Bounded Arithmetic and kn\e bounds in Boolean complexity. To appear in the volume Feasible Mathematics II, 1993.Google Scholar
  11. 11.
    R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proceedings of the 19th ACM Symposium on Theory of Computing, pages 77–82. 1987.Google Scholar
  12. 12.
    É. Tardos. The gap between monotone and nonmonotone circuit complexity is exponential. Combinatorica, 8: 141–142, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    A. Wigderson. The fusion method for lower bounds in circuit complexity. In Combinatorics, Paul Erdős is Eighty. 1993.Google Scholar
  14. 14.
    A.E. AHдpeeB. 0б 0дHOM METOдe ПoЛyЧeHИЯФФekTИBhbIX HИHИ oцeHok MOHOTHHOй. Anveбpa u novuka, 282(5):1033–1037, 1985. A.E. Andreev, on a method for obtaining lower bounds for the complexity of individual monotone functions. Soviet Math. Dokl. 31(3):530–534, 1985.Google Scholar
  15. 15.
    A.E. AHдpeeB. 0б 0дHOM METOдe ПoЛyЧeHИЯФФekTИBhbIX HИHИ oцeHok MOHOTHHOй. Anveбpa u novuka, 26(1):3–21, 1987’. A.E. Andreev, On one method of obtaining effective lower bounds of monotone complexity. Algebra i logikat 26(1):3–21, 1987. In Russian.Google Scholar
  16. 16.
    A.E. AHзбoppB. HИHиe OцeHkиe MOHOTHHOй CдoHOCTи HekOTOpix фyHkци дAH CCCP, 281(4):798–801, 1985. A. A. Razborov, Lower bounds for the monotone complexity of some Boolean functions, Soviet Math. Dokl, 31: 354–357, 1985.Google Scholar
  17. 17.
    A.E. AHзбoppB. HИHиe OцeHkиe MOHOTHHOй CдoHOCTи лoгичeckoгo пepMaHeHTa. MameM. 3aM 37(6):887–900, 1985. A. A. Razborov, Lower bounds of monotone complexity of the logical permanent function, Mathem. Notes of the Academy of Sci of the USSR, 37: 485–493, 1985.Google Scholar
  18. 18.
    A.E. AHзбoppB. HИHиe OцeHkиe pa3Mepa cxem oгpaHичeHHoй глyбиHbI B пoлHOM биce, coдepaщeM фyHkцию лoгичeckoгo cлoжehия MameM. 3aM., 41(4):598–607, 1987. A. A. Razborov, Lower bounds on the size of bounded-depth networks over a complete basis with logical addition, Mathem. Notes of the Academy of Sci of the USSR, 41(4):333–338, 1987.Google Scholar
  19. 19.
    A.E. AHзбoppB. HИHиe OцeHkиe cлoжHocTи peaлизaции cиMMeTpичeckиx бyлeBIX фyhkций koHTakTHO-BeHTилbHbIMи cxeMaMи MameM. 3aM., 48(6):79–91, 1990. A. A. Razborov, Lower bounds on the size of switching-and-rectifier networks for symmetric Boolean functions, Mathem. Notes of the Academy of Sci. of the USSR.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Alexander A. Razborov
    • 1
  1. 1.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations