The Mathematics of Paul Erdös II pp 70-78

Part of the Algorithms and Combinatorics book series (AC, volume 14)

Hereditary and Monotone Properties of Graphs

  • Béla Bollobás
  • Andrew Thomason


Given a hereditary graph property Ρ let Ρn be the set of those graphs in Ρ on the vertex set {1, …, n}. Define the constant cn by \(\left| {P^n } \right| = 2^{cn(_2^n )} .\) We show that the limit limn → ∞ cn always exists and equals 1 − 1/r, where r is a positive integer which can be described explicitly in terms of Ρ. This result, obtained independently by Alekseev, extends considerably one of Erdős, Frankl and Rödl concerning principal monotone properties and one of Prömel and Steger concerning principal hereditary properties.

AMS Subject Classification: Primary 05C35, Secondary 05C30.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.E. Alekseev, Hereditary classes and coding of graphs, Probl. Cybern. 39 (1982) 151–164 (in Russian).Google Scholar
  2. 2.
    V.E. Alekseev, On the entropy values of hereditary classes of graphs, Discrete Math. Appi. 3 (1993) 191–199.CrossRefGoogle Scholar
  3. 3.
    B. Bollobás, Extremal Graph Theory, Academic Press (1978), xx+488pp.MATHGoogle Scholar
  4. 4.
    B. Bollobás and P. Erdős, On the structure of edge graphs, Bull. London Math. Soc. 5 (1973) 317–321.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    B. Bollobás, P. Erdős and M. Simonovits, On the structure of edge graphs II, J. London Math. Soc. 12(2) (1976) 219–224.MATHCrossRefGoogle Scholar
  6. 6.
    B. Bollobás and A. Thomason, Projections of bodies and hereditary properties of hypergraphs (submitted).Google Scholar
  7. 7.
    B. Bollobás and A. Thomason, An extension of the Erdős-Stone theorem, (in preparation).Google Scholar
  8. 8.
    V. Chvátal and E. Szemerédi, On the Erdős-Stone theorem, J. London Math. Soc. 23 (1981) 207–214.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    P. Erdős, P. Frankl and V. Rödl, The asymptotic enumeration of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs and Combinatorics 2 (1986), 113–121.MathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Erdős, D.J. Kleitman and B.L. Rothschild, Asymptotic enumeration of K n-free graphs, in International Coll. Comb., Atti dei Convegni Lincei (Rome) 17 (1976) 3–17.Google Scholar
  11. 11.
    P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087–1091.MathSciNetCrossRefGoogle Scholar
  12. 12.
    D.J. Kleitman and B.L. Rothschild, Asymptotic enumeration of partial orders on a finite set, Trans. Amer. Math. Soc. 205 (1975) (205–220).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Ph.G. Kolaitis, H.J. Prömel and B.L. Rothschild, K l+i-free graphs: asymptotic structure and a 0–1-law, Trans. Amer. Math. Soc. 303 (1987) 637–671.MathSciNetMATHGoogle Scholar
  14. 14.
    H.J. Prömel and A. Steger, Excluding induced subgraphs: quadrilaterals, Random Structures and Algorithms 2 (1991) 55–71.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    H.J. Prömel and A. Steger, Excluding induced subgraphs II: Extremal graphs Discrete Applied Mathematics (to appear).Google Scholar
  16. 16.
    H.J. Prömel and A. Steger, Excluding induced subgraphs III: a general asymptotic, Random Structures and Algorithms 3 (1992) 19–31.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    H.J. Prömel and A. Steger, The asymptotic structure of H-free graphs, in Graph Structure Theory (N. Robertson and P. Seymour, eds), Contemporary Mathematics 147 Amer. Math. Soc., Providence, 1993, pp. 167–178.Google Scholar
  18. 18.
    H.J. Prömel and A. Steger, Almost all Berge graphs are perfect, Combinatorics, Probability and Computing 1 (1992) 53–79.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30(2) (1929) 264–286.MATHGoogle Scholar
  20. 20.
    V. Rödl (personal communication).Google Scholar
  21. 21.
    V. Rödl, Universality of graphs with uniformly distributed edges, Discrete Mathematics 59 (1986) 125–134.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    E.R. Scheinerman and J. Zito, On the size of hereditary classes of graphs, J. Combinatorial Theory (B), (to appear).Google Scholar
  23. 23.
    E. Szémeredi, Regular partitions of graphs, in Proc. Colloque Inter. CNRS (J.-C. Bermond, J.-C. Fournier, M. las Vergnas, D. Sotteau, eds), (1978).Google Scholar
  24. 24.
    P. Turán, On an extremal problem in graph theory (in Hungarian), Mat. Fiz. Lapok 48 (1941) 436–452.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Béla Bollobás
    • 1
  • Andrew Thomason
    • 1
  1. 1.Department of Pure Mathematics and Mathematical StatisticsCambridgeEngland

Personalised recommendations