An Object-Oriented Library for 3D PET Reconstruction Using Parallel Computing

  • Claire Labbé
  • K. Thielemans
  • D. Belluzzo
  • V. Bettinardi
  • M. C. Gilardi
  • D. S. Hague
  • M. Jacobson
  • S. Kaiser
  • R. Levkovitz
  • T. Margalit
  • G. Mitra
  • C. Morel
  • T. J. Spinks
  • P. Valente
  • H. Zaidi
  • A. Zverovich
Part of the Informatik aktuell book series (INFORMAT)

Summary

We present a object-oriented library of C++ features for 3D PET reconstruction. This library has been designed so that it can be used for many algorithms and scanncr geometries. Its flexibility, portability and modular design have helped greatly to (a) develop new iterative algorithms, (b) compare iterative and analytic methods using simulated, phantom and patient data, (c) adapt and apply the developed reconstruction algorithms to different designs of tomographs. As 3D iterative reconstruction algorithms are time consuming, the library contains classes and functions to run parts of the reconstruction in parallel, using parallel platforms with a distributed memory architecture.

Keywords

PET Reconstruction Algorithms software engineering parallel computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett T etal: A review of methods and techniques used in 3D PET image reconstruction. Submitted for publication to Medical Image Analysis, 1998.Google Scholar
  2. 2.
    Kinahan PE and Rogers JG: Analytic 3D image reconstruction using all detected events. IEEE Trans. Nucl. Sci., 36: 964–968.Google Scholar
  3. 3.
    Defrise M et al.: Exact and approximate rebinning algorithms for 3D PET data. IEEE Trans. Med. Imag., 16:145–158, 1997.CrossRefGoogle Scholar
  4. 4.
    Shepp LA and Vardi Y: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imag., 1: 113–122, 1982.CrossRefGoogle Scholar
  5. 5.
    Hudson HM and Larkin RS: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imag., 13: 601–609, 1994.CrossRefGoogle Scholar
  6. 6.
    Green PJ: Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imag., 9: 84–93, 1990.CrossRefGoogle Scholar
  7. 7.
    Kaufman L: Maximum likelihood, least squares and penalized least squares for PET. IEEE Trans. Med. Imag., 12: 200–214, 1993.CrossRefGoogle Scholar
  8. 8.
    Depierro AR: On the relation between the ISRA and the EM algorithm for positron emission tomography. IEEE Trans. Med. Imag., 12: 328–333, 1993.CrossRefGoogle Scholar
  9. 9.
    Herman GT and Meyer LB: Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Med. Imag., 12: 600–609, 1993.CrossRefGoogle Scholar
  10. 10.
    Siddon RL: Fast calculation of the exact radiological path for a three-dimensional CT array. Med. Phys., 12: 252–255, 1985.CrossRefGoogle Scholar
  11. 11.
    Cho ZH, Chen CM and Lee SY: Incremental algorithm - A new fast backprojection scheme for parallel beam geometries. IEEE Trans. Med. Imag., 9: 207–217, 1990.CrossRefGoogle Scholar
  12. 12.
    Egger M, Joseph C, and Morel C: Incremental beamwise backprojection using geometrical symmetries for 3D PET reconstruction in a cylindrical scanner geometry. Phys. Med. Biol., 43: 3009–3024, 1998.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Claire Labbé
    • 1
  • K. Thielemans
    • 2
  • D. Belluzzo
    • 3
  • V. Bettinardi
    • 3
  • M. C. Gilardi
    • 3
  • D. S. Hague
    • 4
  • M. Jacobson
    • 5
  • S. Kaiser
    • 6
  • R. Levkovitz
    • 5
  • T. Margalit
    • 5
  • G. Mitra
    • 1
  • C. Morel
    • 1
  • T. J. Spinks
    • 2
  • P. Valente
    • 4
  • H. Zaidi
    • 1
  • A. Zverovich
    • 4
  1. 1.Division of Nuclear MedicineGeneva University HospitalGeneva 4Switzerland
  2. 2.Medical Research Council Cyclotron UnitHammersmith HospitalLondonUK
  3. 3.Department of Biomedical Sciences and TechnologiesInstituto H.S. RaffaeleMilanoItaly
  4. 4.Department of Mathematics and StatisticsBrunel UniversityUxbridgeUK
  5. 5.Israel Institute of Technology, Technion CityHaifaIsrael
  6. 6.PARSYTEC Computer GmbHAachenGermany

Personalised recommendations