Skip to main content

Real Quantifier Elimination in Practice

  • Conference paper
Algorithmic Algebra and Number Theory

Abstract

We consider polynomials and rational functions which are invariant under the action of a finite linear group. The aim is to give a survey over the knowledge on some structural properties of such rings and fields of invariants. Particular emphasis lies on the modular case, where the characteristic of the ground field divides the group order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. S. Abhyankar, Projective polynomials, Proc. Amer. Math. Soc. 125 (1997), 1643–1650.

    Article  MathSciNet  MATH  Google Scholar 

  2. D.J. Benson, Polynomial Invariants of Finite Groups, LMS Lecture Notes Series, vol. 190, Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  3. H. E. A. Campbell, A. V. Geramita, I. P. Hughes, R. J. Shank, D. L. Wehlau, Non-Cohen-Macaulay vector invariants and a Noether bound for a Gorenstein ring of invariants, preprint,Kingston, Ontario 1996.

    Google Scholar 

  4. D. Carlisle, P.H. Kropholler, Rational invariants of certain orthogonal and unitary groups, Bull. London Math. Soc. 24 (1992) 57–60.

    Google Scholar 

  5. C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 67 (1955) 778–782.

    Article  MathSciNet  Google Scholar 

  6. D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Graduate Texts in Mathematics vol. 150, Springer, New York, 1995

    Google Scholar 

  7. E. Fischer, Die Isomorphie der Invariantenkorper der endlichen Abelschen Gruppen linearer Transformationen,Nachr. Konigl. Ges. Wiss. Gottingen (1915),77–80.

    Google Scholar 

  8. N.L. Gordeev, Finite linear groups whose algebras of invariants are complete intersections, Math. USSR Izv. 28 (1987), 335–379.

    Article  MATH  Google Scholar 

  9. V. Kac, K. Watanabe, Finite linear groups whose ring of invariants is a complete intersection, Bull. Amer. Math. Soc. 6 (1982), 221–223.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Kemper, Das Noethersche Problem und generische Polynome, Dissertation, Universitat Heidelberg, 1994.

    Google Scholar 

  11. G. Kemper, Calculating invariant rings of finite groups over arbitrary fields, J. Symbolic Computation21(1996), 351–366.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Kemper, On the Cohen-Macaulay property of modular invariant rings, submitted; IWR-preprint 97-38.

    Google Scholar 

  13. G. Kemper, Hilbert series and degree bounds in invariant theory, this volume.

    Google Scholar 

  14. G. Kemper, G. Malle, The finite irreducible linear groups with polynomial ring of invariants, TI-ansformation Groups2(1997), 57–89.

    Article  MathSciNet  MATH  Google Scholar 

  15. G.Kemper, G.Malle, Invariant fields of finite irreducible reflection groups, submitted; IWR-preprint 97–26.

    Google Scholar 

  16. H. Lenstra, Rational functions invariant under a finite abelian group, Invent. Math. 25(1974), 299–325.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Maeda, Noether’s problem for As, J. Algebra 125 (1989), 418–430.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Miyata, Invariants of certain groups I, Nagoya Math. J. 41(1971), 69–73.

    MathSciNet  MATH  Google Scholar 

  19. H. Nakajima, Invariants of finite groups generated by pseudo-reflections in positive characteristic, Tsukuba J. Math. 3 (1979), 109–122.

    MathSciNet  MATH  Google Scholar 

  20. H. Nakajima, Invariants of finite abelian groups generated by transvections, Tokyo J. Math. 3 (1980), 201–214.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Nakajima, Regular rings of invariants of unipotent groups, J. Algebra 85 (1983), 253–286.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Nakajima, Quotient complete intersections of affine spaces by finite linear groups, Nagoya Math. J. 98(1985), 1–36.

    MathSciNet  MATH  Google Scholar 

  23. E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. ’Ann. 78(1918), 221–229.

    Article  MathSciNet  Google Scholar 

  24. D. Saltman, Generic Galois extensions and problems in field theory, Adv. in Math. 43(1982), 250–283.

    Article  MathSciNet  MATH  Google Scholar 

  25. J .-P. Serre, Groupes finis d’automorphismes d’anneaux locaux reguliers, in: Golloque d’Algebre ENSJF (1967), Paris, pp. 801–811.

    Google Scholar 

  26. G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Ganad. J. Math. 6 (1954), 274–304.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. SMITH, Polynomial Invariants of Finite Groups,A. K. Peters, Wellesley, Mass. 1995.

    Google Scholar 

  28. R.P. Stanley, Hilbert functions of graded algebras, Adv. in Math. 28(1978), 57–83.

    Article  MathSciNet  MATH  Google Scholar 

  29. R.P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. 1 (1979), 475–511.

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Sturmfels, Algorithms in Invariant Theory, Springer, Wien, New York 1993.

    MATH  Google Scholar 

  31. R. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math. 7(1969), 148–158.

    Article  MathSciNet  MATH  Google Scholar 

  32. V.E. VoskresenskII, Birational properties of linear algebraic groups (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 34(1970), 366–375. English translation: Math.USSR - Izv.4 (1970), 1-17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dolzmann, A., Sturm, T., Weispfenning, V. (1999). Real Quantifier Elimination in Practice. In: Matzat, B.H., Greuel, GM., Hiss, G. (eds) Algorithmic Algebra and Number Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59932-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59932-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64670-9

  • Online ISBN: 978-3-642-59932-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics