Advertisement

Flame Front Analysis in Turbulent Combustion

  • Hanno Scharr
  • Bernd Jähne
  • Stefan Böckle
  • Jan Kazenwadel
  • Thomas Kunzelmann
  • Christof Schulz
Part of the Informatik aktuell book series (INFORMAT)

Abstract

Fundamental research of turbulent combustion often requires the unambiguous localization of flame front positions and structures. Laser-induced fluorescence (LIF) imaging provides different possibilities of detecting two-dimensional distributions of species typical for reactive areas. Simultaneous measurements of hydroxyl and formaldehyde laser-induced fluorescence and total number densities by Rayleigh scattering were carried out in a Bunsen type flame, which yields state of the art but noisy images. Nonlinear anisotropic diffusion of edge-enhancing type [1] is shown here to enhance the capabilities of the laser-imaging technique in terms of flame front localization and correlation analysis.

Keywords

Turbulent combustion flame front position segmentation anisotropic diffusion filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Weickert, Anisotropic diffusion in image processing, Teubner, 1998.Google Scholar
  2. 2.
    Stårner, S.H., Bilger, R.W., Long, M.B.,A method for contour-aligned smoothing ofjoint 2D scalar images in turb. flames, Comb. Sei. and Tech. 107:195–203 (1995).CrossRefGoogle Scholar
  3. 3.
    Schießl, R., Dreizier, A., Maas, U., Comparison of different ways of image postprocessing: detection of flame fronts, Soc. of Autom. Eng., No. 1999-01-3651 (1999).Google Scholar
  4. 4.
    Landenfeld, T., Kremer, A., Hassel, E.P., Janicka, J., Schäfer, T., Kazenwadel, J., Schulz, C. and Wolfrum, J., Laserdiagnostic and numerical studies of strongly swirling natural-gas flames, Proc. Comb. Inst. 27:1023–1030 (1998).Google Scholar
  5. 5.
    Paul, P.H. and Najm H.B., Planar laser-induced fluorescence imaging of flame heat release rate, Proc. Comb. Inst. 27:43–50 (1998).Google Scholar
  6. 6.
    Böckle, S., Kazenwadel, J., Kunzelmann, T., Shin, D.-I., Schulz, C., Wolfrum J., Simultaneous single-shot laser-based imaging of formaldehyde, OH and temperature in turbulent flames, Proc. Comb. Inst. 28 (2000) in press.Google Scholar
  7. 7.
    Böckle, S., Kazenwadel, J., Kunzelmann, T., Shin, D.-I., Schulz, C., Single-shot laser-induced fluorescence imaging of formaldehyde with XeF excimer excitation, Appl. Phys. B 70:733–735(2000).CrossRefGoogle Scholar
  8. 8.
    P. Perona, J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 12, 629–639, 1990.CrossRefGoogle Scholar
  9. 9.
    H. Scharr, Optimal Operators in Digital Image Processing,Ph.D. Thesis, Univ. Heidelberg, 2000.Google Scholar
  10. 10.
    B. Jahne, Performance charact. of low-level motion estimators in spatiotemp. imgs., DAGM-Works. Perf. Char. and Qual, of CV. Algs., 1997.Google Scholar
  11. 11.
    H. Scharr, S. Körkel, B. Jähne, Numerische Isotropieoptimierung von FIR-Filtem mittels Querglättung, DAGM’97, 367-374, Springer, 1997.Google Scholar
  12. 12.
    B. Jähne, H. Scharr, S. Körkel, Principles of Filter Design, Handbook on Comp. Vis. and Appl., Acad. Press, 125-152, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Hanno Scharr
    • 1
  • Bernd Jähne
    • 1
  • Stefan Böckle
    • 2
  • Jan Kazenwadel
    • 2
  • Thomas Kunzelmann
    • 2
  • Christof Schulz
    • 2
  1. 1.IWRUniversität HeidelbergHeidelbergDeutschland
  2. 2.PCIUniversität HeidelbergHeidelbergDeutschland

Personalised recommendations