On H2-Matrices

  • W. Hackbusch
  • B. Khoromskij
  • S. A. Sauter

Abstract

A class of matrices (H-matrices) has recently been introduced by one of the authors. These matrices have the following properties: (i) They are sparse in the sense that only few data are needed for their representation, (ii) The matrix-vector multiplication is of almost linear complexity, (iii) In general, sums and products of these matrices are no longer in the same set, but their truncations to the H-matrix format are again of almost linear complexity, (iv) The same statement holds for the inverse of an H-matrix.

The term “almost linear complexity” used above means that estimates are given by O(nlogαn). The logarithmic factor can be avoided by a further improvement, which is described in the present paper. We prove that the storage requirements and the cost of the matrix-vector multiplication is strictly linear in the dimension n, while still (full) system matrices of the boundary element method can be approximated up to the discretization error.

AMS Subject Classifications

65F05 65F30 65F50 65N38 68P05 45B05 35C20 

Keywords

Hierarchical matrices hierarchical bases full matrices fast matrix-vector multiplication BEM FEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hackbusch, W.: Iterative Solution of Large Sparse Systems. Springer Verlag, New York, 1994MATHCrossRefGoogle Scholar
  2. 2.
    Hackbusch, W.: Integral Equations, Theory and Numerical Treatment. ISNM 128.Birkhäuser, Basel, 1995MATHGoogle Scholar
  3. 3.
    Hackbusch, W.: A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices. Computing 62 (1999), 89–108MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Hackbusch, W., Khoromskij, B.N.: A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems. Preprint Nr 22/1999, Max-Planck-Institut für Mathematik, Leipzig, 1999, to appear in ComputingGoogle Scholar
  5. 5.
    Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On H 2-Matrices. Preprint, Max-Planck-Institut für Mathematik, Leipzig, 1999Google Scholar
  6. 6.
    Hackbusch, W., Nowak, Z.P.: On the Fast Matrix Multiplication in the Boundary Element Method by Panel Clustering. Numer. Math. 54 (1989), 463–491MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Sauter, S.A.: Uber die effiziente Verwendung des Galerkin-Verfahrens zur Losung Fredholmscher Integralgleichungen. Dissertation, Universitat Kiel, 1992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • W. Hackbusch
    • 1
  • B. Khoromskij
    • 1
  • S. A. Sauter
    • 2
  1. 1.Max-Planck-Institut Mathematik in den NaturwissenschaftenLeipzigGermany
  2. 2.Institut für MathematikUniversität ZürichZürichSwitzerland

Personalised recommendations