Skip to main content

Modelling, Simulation, and Control of Electrorheological Fluid Devices

  • Conference paper
Lectures on Applied Mathematics

Abstract

The new generation of electrorheological fluids (ERFs) offers a wide range of applicability in fluid mechatronics with automotive ERF devices such as ERF shock absorbers mentioned at first place. The optimal design of such tools requires the proper modelling and simulation both of the operational behaviour of the device itself as well as its impact on the dynamics of the complete vehicle. This paper addresses these issues featuring an extended Bingham fluid model and its numerical solution as well as substitutive models of viscoeleastic-plastic system behaviour. Also control issues for optimal semi-active suspension of vehicles with controllable ERF shock absorbers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alleyne, A., Hedrick, J.K.: Nonlinear Adaptive Control of Active Suspensions.IEEE Transactions on Control Systems Technology 3 (1995), 94–101

    Article  Google Scholar 

  2. Atkin, R.J., Shi, X., Bullough, W.A.: Solutions of the Constitutive Equations for the Flow of an Electrorheological Fluid in Radial Configuations.J. Rheology 35 (1991), 1441–1461

    Article  Google Scholar 

  3. Backé, W., Fees, G., Murrenhoff, H.: Innovative Flüidtechnik - Hochdynamischer Servoantrieb mit elektrorheologischen Flüssigkeiten. o+p Ölhydraulik und Pneumatik 4 1 (1997), 11–12

    Google Scholar 

  4. Ba§ar, T., Bernhard, P.: H -Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach. Birkhauser, Boston, 1991

    Google Scholar 

  5. Bayer AG: Provisional Product Information. Rheobay TP AI 3565 and Rheobay TP AI 3566. Bayer AG, Silicones Business Unit, No. AI 12601e, Leverkusen, 1997

    Google Scholar 

  6. Bayer AG: Technology Based on ERF. Rheobay for Applications in Fluid Mechatronics (in cooperation with IFAS, RWTH Aachen, and Carl Schenck AG, Darmstadt). Bayer AG, Silicones Business Unit, No. AI 12666d-fe, Leverkusen, 1997

    Google Scholar 

  7. Bayer AG and Carl Schenck AG: Active ERF-Vibrationdamper (a joint development by Carl Schenck AG and Bayer AG). Bayer AG, Silicones Business Unit, No. AI 12668d-fe, Leverkusen/Darmstadt, 1998

    Google Scholar 

  8. Bird, B., Armstrong, R., Hassager, O.: Dynamics of Polymeric Liquids. J. Wiley and Sons, New York, 1987

    Google Scholar 

  9. Bonnecaze, R., Brady, J.: Dynamic Simulation of an Electrorheological Fluid.J. Chem. Phys. 96 (1992), 2183–2202

    Article  Google Scholar 

  10. Bonnecaze, R., Brady, J.:Yield Stresses in Electrorheological Fluids.J. Rheol. 38 (1992), 73–115

    Article  Google Scholar 

  11. Butz, T., von Stryk, O.: Modelling and Simulation of Rheological Fluid Devices. Preprint SFB-438-9911, Sonderforschungsbereich 438, Technische Universitat Miinchen - Universitat Augsburg, 1999

    Google Scholar 

  12. Duvaut, G., Lions, J.: Inequalities in Mechanics and Physics. Springer, Berlin-Heidelberg-New York, 1976

    MATH  Google Scholar 

  13. Ehrgott, R.C., Masri, S.F.: Modelling the Oscillatory Dynamic Behaviour of Electrorheological Materials in Shear. Smart Mat. Struct. 1 (1992), 275–285

    Article  Google Scholar 

  14. Engelmann, B., Hiptmair, R., Hoppe, R.H.W., Mazurkevitch, G.: Numerical Simulation of Electrorheological Fluids Based on an Extended Bingham Model. Computing and Visualization in Science, submitted 1999

    Google Scholar 

  15. Filisko, F.: Overview of ER Technology. In: Progress in ER Technology, Havelka, K., ed., Plenum Press, New York, 1995

    Google Scholar 

  16. Gavin, H.P., Hanson, R.D., Filisko, F.E.:Electrorheological Dampers, Part I: Analysis and Design.J. Appl. Mech. 63 (1996), 669–675

    Article  Google Scholar 

  17. . Gavin, H.P., Hanson, R.D., Filisko, F.E.: Electrorheological Dampers, Part II: Testing and Modeling.J. Appl. Mech. 63 (1996), 676–682

    Article  Google Scholar 

  18. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics 9 (1989)

    Google Scholar 

  19. Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities.North-Holland, Amsterdam, 1981

    MATH  Google Scholar 

  20. Hartsock, D., Nowak, R., Chaundy, G.:ER Fluid Requirements for Automotive Devices.J. Rheol. 35 (1991), 1305–1326

    Article  Google Scholar 

  21. Janocha, H., Rech, B., Bölter, R.: Practice-Relevant Aspects of Constructing ER Fluid Actuators.Int. J. Modern Physics B 10 (1996), 3243–3255

    Article  Google Scholar 

  22. Kamath, G.M., Hurt, M.K., Wereley, N.M.:Analysis and Testing of Bingham Plastic Behaviour in Semi-Active Electrorheological Fluid Dampers.J. Appl. Mech. 63c (1996), 676–682

    Google Scholar 

  23. Kamath, G.M., Wereley, N.M.: System Identification of ER Fluid Dampers Using a Nonlinear Mechanisms-Based Model. Paper No. SPIE-2717-46, 1996 SPIE Conference on Smart Materials and Structures, 25-29 February, San Diego, CA, 1996

    Google Scholar 

  24. Kamath, G.M., Wereley, N.M.:A Nonlinear Viscoelastic-Plastic Model for Electrorheological Fluids.Smart Mat. Struct. 6 (1997), 351–359

    Article  Google Scholar 

  25. Kortiim, W., Lugner, P.: Systemdynamik und Regelung von Fahrzeugen. Springer-Verlag, Berlin, 1994

    Google Scholar 

  26. Koslik, B., Rill, G., von Stryk, O., Zampieri, D.: Active Suspension Design for a Tractor by Optimal Control Methods. Preprint SFB-438-9801, Sonderforschungsbereich 438, Technische Universität München - Universität Augsburg, 1998

    Google Scholar 

  27. McGlamroch, N.H., Gavin, P.G.: Closed Loop Structural Control Using Electrorheological Dampers.Proc. American Control Conference (1995), 4173–4177

    Google Scholar 

  28. Levine, W. S. (ed.): The Control Handbook. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  29. Makris, N., Burton, S.A., Taylor, D.P.: Modelling the Response of ER Damper: Phenomenology and Emulation.J. Eng. Mech. (1996), 897–906

    Google Scholar 

  30. Mitschke, M.: Dynamik der Kraftfahrzeuge, Band B: Schwingungen. 3rd ed., Springer-Verlag, 1993

    Google Scholar 

  31. Powell, J.A.:Modelling the Oscillatory Response of an Electrorheological Fluid. Smart Mat. Struct. 3 (1994), 416–438

    Article  Google Scholar 

  32. Rajagopal, K., Wineman, A.:Flow of Electrorheological Materials.Acta Mechanica 91 (1992), 57–75

    Article  MathSciNet  Google Scholar 

  33. Spencer Jr., B.F., Dyke, S.J., Sain, M.K., Carlson, J.D.: Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction.Smart Mat. Struct. 5 (1996), 565–575

    Article  Google Scholar 

  34. Spencer Jr., B.F., Dyke, S.J., Sain, M.K., Carlson, J.D.:Phenomenological Model of a Magnetorheological Damper.J. Engrg. Mech., ASCE. 123 (1997), 230–238

    Article  Google Scholar 

  35. Stanway, R., Peel, D.J., Bullough, W.A.:Applications of Electro-Rheological Fluids in Vibration Control: A Survey.Smart Mat. Struct. 5 (1995), 464–482

    Article  Google Scholar 

  36. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. 2nd ed., Springer-Verlag, Berlin, 1993

    MATH  Google Scholar 

  37. Wendt, E., Büsing, K.W.: Properties of a New Generation of Non-Abrasive and Water-Free Electrorheological Fluids. Preprint. Bayer AG, Silicones Business Unit, Leverkusen, 1997

    Google Scholar 

  38. Whittle, M.:Computer Simulation of an Electrorheological Fluid.J. Non-Newton. Fluid Mech. 3 7 (1990), 233–263

    Article  Google Scholar 

  39. Whittle, M., Atkin, R.J., Bullough, W.: Fluid Dynamic Limitations on the Performance of an Electrorheological Clutch.J. Non-Newton. Fluid Mech. 57 (1995), 61–81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Karl-Heinz Hoffmann on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoppe, R.H.W., Mazurkevitch, G., Rettig, U., von Stryk, O. (2000). Modelling, Simulation, and Control of Electrorheological Fluid Devices. In: Bungartz, HJ., Hoppe, R.H.W., Zenger, C. (eds) Lectures on Applied Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59709-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59709-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64094-0

  • Online ISBN: 978-3-642-59709-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics