Structural Identification of Nonlinear Coefficient Functions in Transport Processes through Porous Media

  • P. Knabner
  • B. Igler
Conference paper


Mathematical models provide the starting point for the simulation of complex processes, which arise in the natural and engineering sciences. Characteristic properties of the considered systems are represented by model parameters or coefficients. These have to be determined by experiments. If the coefficients are not measured directly, as direct measurements are not possible or do not lead to satisfying results, numerical identification procedures have to be applied.


Porous Medium Inverse Problem Capillary Pressure Relative Permeability Direct Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumeister, J.: Stable Solution of Inverse Problems. Vieweg,Braunschweig, 1987zbMATHGoogle Scholar
  2. 2.
    Barrett, J.W., Knabner, P.: Finite Element Approximation of Transport of Reactive Solutes in Porous Media. Part 2: Error Estimates for Equilibrium Adsorption Processes. SINUM, 3 4 ( 2 ) (1997), 455–479MathSciNetGoogle Scholar
  3. 3.
    Chardaire, C., Chavent, G., J. Jaffre, J., Liu, J.: Relative Permeabilities and Capillary Pressure Estimation through Least Square Fitting. In P.R. King, editor, The Mathematics of Oil Recovery,Clarendon Press Oxford, 1992Google Scholar
  4. 4.
    J.R. Cannon, J.R.,DuChateau, P.: Indirect Determination of Hydraulic Properties of Porous Media . International Series of Numerical Mathematics, Birkhauser, Basel, 114 (1993), 37–50Google Scholar
  5. 5.
    Chavent, G., Lemmonier, P.: Identification de la Non-Linearite d’une Equation Parabolique Quasilineaire . Applied Mathematics and Optimization 1 ( 2 )(1974), 121–162MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chardaire-Riviere, C., Chavent, G., Jaffre, J., Liu, J.: Multiscale Representation for Simultaneous Estimation of Relative Permeabilities and Capillary Pressure. SPE 20501, Society of Petroleum Engineers, Richardson,Texas, 1990Google Scholar
  7. 7.
    Chavent, G., Zhang, J., Chardaire-Riviere, C.: Estimation of Mobilities and Capillary Pressure from Centrifuge Experiments. In Bui. H.D., Tanaka, M., Bonnet, M., Maigre, H., Luzzato, E., Reynier, M., editors, Inverse Problems in Engineering Mechanics, Rotterdam, (1994), Balkema, 265–272Google Scholar
  8. 8.
    DuChateau, P.: An Inverse Problem for the Hydraulic Properties of Porous Media. In Proc. of the 1994 Groundwater and Modeling Conference, Colorado State University, (1994) 95–103Google Scholar
  9. 9.
    DuChateau, P.: An Introduction to Inverse Problems in Partial Differential Equations for Engineers, Physicists and Mathematicians, a Tutorial. In Gottlieb, J., DuChateau, P., editors,Proceedings of the Workshop on Parameter Identification and Inverse Problems in Hydrology, Geology and Ecology, Kluwer Aca. Publ., (1995), 3–50Google Scholar
  10. 10.
    DuChateau, P.: Monotonicity and Invertibility of Coefficient-To-Data Mappings for Parabolic Inverse Problems. SIAM Journal on Mathematical Analysis, 3 6 ( 6 ) (November 1995), 1473–1487Google Scholar
  11. 11.
    Hoffmann, K.-H., Knabner, P., Seifert, W.: Adaptive Methods for Identification Problems in Groundwater . Adv. in Water Resources, 14 (1991), 220–239MathSciNetCrossRefGoogle Scholar
  12. 12.
    Knabner, P.: Mathematische Modelle für Transport und Sorption gelöster Stoffe in poräsen Medien.P. Lang, Frankfürt, 1991Google Scholar
  13. 13.
    Knabner, P.:Finite-Element-Approximation of Solute Transport in Porous Media with General Adsorption Processes. In S.-T. Xiao, editor, Flow and Transport in Porous Media, World Scientific Publishing, Singapore(1992), 223–292Google Scholar
  14. 14.
    J. Liu. A multiresolution method for distributed parameter estimation. SIAM Journal on Scientific Computing, 14(2) (March 1993),389–405zbMATHCrossRefGoogle Scholar
  15. 15.
    Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner,Stuttgart, 1989zbMATHGoogle Scholar
  16. 16.
    Schittkowski, K.: Solving Constrained Nonlinear Least Squares Problems by a General Purpose SQP-Method. In Hoffmann, K.-H., Hiriart-Urruty, J.-B., Lemarechal, C., and Zowe, J., editors, Trends in Mathematical Optimization, volume 83, Birkhäuser, 1988Google Scholar
  17. 17.
    Sun, N.-Z.: Inverse Problems in Groundwater Modeling.Kluwer Academics, Dordrecht, 1994Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • P. Knabner
    • 1
  • B. Igler
    • 2
  1. 1.Angewandte Mathematik IUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Andersen ConsultingMünchenGermany

Personalised recommendations