Parallel solution of Partial Differential Equations with Adaptive Multigrid Methods on Unstructured Grids

  • Peter Bastian
  • Klaus Birken
  • Klaus Johannsen
  • Stefan Lang
  • Volker Reichenberger
  • Christian Wieners
  • Gabriel Wittum
  • Christian Wrobel

Abstract

We present new parallel results for the solution of partial differential equations based on the software platform UG. State-of-the-art numerical methods have been developed and implemented for the efficient and comfortable solution of real-world problems. UG supports distributed unstructured grids, adaptive grid refinement, derefinement/coarsening, robust parallel multigrid methods, various discretizations, dynamic load balancing, mapping and grid partitioning. Here, we give examples for a parallel algebraic multigrid method, for elasto-plastic computations, and for simulations of two-phase flow in porous media.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Aziz and A. Settari. Petroleum Reservoir Simulation. Elsevier, 1979.Google Scholar
  2. 2.
    R. Bank . PLTMG Users Guide Version 7.0, SIAM, 1994.Google Scholar
  3. 3.
    R. Bank and C. Wagner. Multilevel ILU decomposition, Numerische Mathematik, accepted.Google Scholar
  4. 4.
    P. Bastian. Parallele adaptive Mehrgitterverfahren, Teubner Skripten zur Numerik, Teubner-Verlag, 1996.MATHGoogle Scholar
  5. 5.
    P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert, and C. Wieners. UG — a flexible software toolbox for solving partial differential equations. Computation and Visualization in Science, (1), 1997.Google Scholar
  6. 6.
    P. Bastian, K. Birken, K. Johannsen, S. Lang, V. Reichenberger, C. Wieners, G. Wittum, and C. Wrobel. A parallel software-platform for solving problems of partial differential equations using unstructured grids and adaptive multigrid methods, in W. Jäger and E. Krause, editor: High performance computing in science and engineering, pages 326–339. Springer, 1999.Google Scholar
  7. 7.
    P. Bastian and R. Helmig. Efficient Fully-Coupled Solution Techniques for Two-Phase Flow in Porous Media. Advances in Water Resources Research, 1997 (submitted).Google Scholar
  8. 8.
    K. Birken. An efficient programming model for parallel and adaptive CFD-algorithms. In Proceedings of Parallel CFD Conference 1994, Kyoto, Japan, 1995. Elsevier Science.Google Scholar
  9. 9.
    K. Birken . Ein Modell zur effizienten Parallelisierung von Algorithmen auf komplexen, dynamischen Datenstrukturen. PhD thesis, Universität Stuttgart, 1998.Google Scholar
  10. 10.
    P. Deuflhard, P. Leinen, and H. Yserentant. Concepts of an adaptive hierarchical finite element code, IMPACT of Computing in Science and Engineering, 1 (1989), pp. 3–35.MATHCrossRefGoogle Scholar
  11. 11.
    Hendrickson and R. Leland. The chaco user’s guide version 1.0, Tech. Rep. SAND93-2339, Sandia National Laboratory, October 1993.CrossRefGoogle Scholar
  12. 12.
    E. H. Hirschel (ed.). Flow Simulation with High-Performance Computers II, Vieweg Verlag, Braunschweig, 1996.MATHGoogle Scholar
  13. 13.
    B. H. Kueper, E. O. Frind. An Overview of Immiscible Fingering in Porous Media, J. of Contaminant Hydrology, 2, 1988, 95–110, Amsterdam.Google Scholar
  14. 14.
    S. Lang. Lastverteilung für paralle adaptive Mehrgitterberechnungen, Master’s thesis, Universität Erlangen-Nürnberg, IMMD III, 1994.Google Scholar
  15. 15.
    D. J. Mavripilis. Three-dimensional Multigrid Reynolds-averaged Navier-Stokes solver for unstructured meshes, AIAA Journal, 33 (1995).Google Scholar
  16. 16.
    L. C. McInnes and B. Smith. PetSc2.0: A case study of using MPI to develop numerical software libraries, in Proc. of the MPI Developers Conference, Notre Dame, IN, 1995.Google Scholar
  17. 17.
    M. Raw. A coupled algebraic multigrid solver for the 3D Navier-Stokes equations, in Proc. of the 10th GAMM Seminar Kiel, Notes on Numerical Fluid Mechanics, G. W. W. Hackbusch, ed., vol. 49, Vieweg-Verlag, 1995.Google Scholar
  18. 18.
    M. Rumpf, R. Neubauer, M. Ohlberger, R. Schworer, Efficient visualization of large-scale data on hierarchical meshes. Visualization in Scientific Computing ’97, Springer, 1997.Google Scholar
  19. 19.
    J. Schöberl, A rule-based tetrahedral mesh generator. Computing and Visualization in Science 1, pp. 1–26, 1997.CrossRefGoogle Scholar
  20. 20.
    C. Wagner. Filtering algebraic multigrid, to appear.Google Scholar
  21. 21.
    C. Wieners. Robust multigrid methods for nearly incompresible elasticity, 1998, submitted.Google Scholar
  22. 22.
    C. Wieners. Multigrid methods for Prandtl-Reuβ-plasticity, Numer. Lin. Alg. Appl., 1999, to appear.Google Scholar
  23. 23.
    G. Wittum. Multigrid methods for Stokes- and Navier-Stokes equations, Numer. Math., 54 (1989), pp. 543–563.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Peter Bastian
    • 1
  • Klaus Birken
    • 1
  • Klaus Johannsen
    • 1
  • Stefan Lang
    • 1
  • Volker Reichenberger
    • 1
  • Christian Wieners
    • 1
  • Gabriel Wittum
    • 1
  • Christian Wrobel
    • 1
  1. 1.Interdisziplinäres Zentrum für Wissenschaftliches RechnenUniversität HeidelbergHeidelbergGermany

Personalised recommendations