Immunobiology of Bacterial CpG-DNA pp 41-58

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 247)

Macrophage Activation by Immunostimulatory DNA

  • K. J. Stacey
  • D. P. Sester
  • M. J. Sweet
  • D. A. Hume


Activation of macrophages/dendritic cells appears to be of crucial importance in vivo in immunostimulation by foreign DNA. Immune cell activation by bacterial DNA was first observed using mixed spleen cell cultures (Shimada et al. 1986; Yamamoto et al. 1992) and B cells (Messina et al. 1991), and the role of unmethylated CpG motifs in this activation was elucidated in B cells (Krieg et al. 1995). This work showed that oligonucleotides containing an unmethylated CG dinucleotide in a certain sequence context (ACGT but not CCGG) could mimic the activity of bacterial DNA. A combination of methylation of the vertebrate genome and suppression of the frequency of activating sequences may prevent immune activation by self DNA. In mixed spleen cell culture, bacterial DNA or stimulatory oligonucleotides (here termed “CpG DNA”) promote production of a range of cytokines, including interferons-α/β and -γ (IFN-α/β, IFN-γ), interleukins-6 and -12 (IL-6, IL-12) and tumour necrosis factor-α (TNF-α). A role for macrophages in this activation was suggested by the finding that the production of IFN-γ by the non-adherent fraction of spleen cells was dependent on IL-12 and TNF-α production by the adherent fraction (Halpern et al. 1996). Direct activation of macrophages by bacterial DNA and oligonucleotides was first shown by activation of nuclear factor (NF)-ĸB and induction of TNF-α mRNA and human immunodeficiency virus (HIV)-1 long terminal repeat (LTR) promoter activity (Stacey et al. 1996).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akira S, Isshiki H, Sugita T, Tanabe O, Kinoshita S, Nishio Y, Nakajima T, Hirano T, Kishimoto T (1990) A nuclear factor for IL-6 expression (NF-IL6) is a member of the C/EBP family. EMBO J 9: 1897–1906PubMedGoogle Scholar
  2. Akira S, Kishimoto T (1996) Role of interleukin-6 in macrophage function. Curr Opin Hematol 3: 87–93PubMedCrossRefGoogle Scholar
  3. Anitescu M, Chace JH, Tuetken R, Yi A-K, Berg D, Krieg AM, Cowdery JS (1997) Interleukin-10 functions in vitro and in vivo to inhibit bacterial DNA-induced secretion of interleukin-12. J Interferon Cytokine Res 17: 781–788PubMedCrossRefGoogle Scholar
  4. Baeuerle P, Henkel T (1994) Function and activation of NF-KB in the immune system. Annu Rev Immunol 12: 141–179PubMedCrossRefGoogle Scholar
  5. Baldwin AS, Jr (1996) The NF-KB and IieB proteins: New discoveries and insights. Annu Rev Immunol 14: 649–681PubMedCrossRefGoogle Scholar
  6. Beltinger C, Saragovi HU, Smith RM, LeSauteur L, Shah N, DeDionisio L, Christensen L, Raible A, Jarett L, Gewirtz AM (1995) Binding, uptake, and intracellular trafficking of phosphorothioatemodified oligodeoxynucleotides. J Clin Invest 95: 1814–1823PubMedCrossRefGoogle Scholar
  7. Benimetskaya L, Loike JD, Khaled Z, Loike G, Silverstein SC, Cao L, Khoury JE, Cai T-Q, Stein CA (1997) Mac-1 (CD1lb/CD18) is an oligodeoxynucleotide-binding protein. Nature Med 3: 414–420PubMedCrossRefGoogle Scholar
  8. Bennett RM (1993) As nature intended? The uptake of DNA and oligonucleotides by eukaryotic cells. Antisense Res Dev 3: 235–241PubMedGoogle Scholar
  9. Brennan P, O’Neil L (1995) Effects of oxidants and antioxidants on NF-KB activation in three different cell lines: evidence against a universal hypothesis involving oxygen radicals. Biochem Biophys Acta 1260: 1670–1675Google Scholar
  10. Buscher D, Hipskind RA, Krautwald S, Reimann T, Baccarini M (1995) Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages. Mol Cell Biol 15: 466–475PubMedGoogle Scholar
  11. Chace JH, Hooker NA, Mildenstein KL, Krieg AM, Cowdery JS (1997) Bacterial DNA-induced NK cell IFN-γ production is dependent on macrophage secretion of IL-12. Clin Immunol Immunopathol 84: 185–193PubMedCrossRefGoogle Scholar
  12. Chu RS, Targoni OS, Krieg AM, Lehmann PV, Harding CV (1997) CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 ( Thl) immunity. J Exp Med 186: 1623–1631PubMedCrossRefGoogle Scholar
  13. Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo LD (1996) DNA-based immunization by in vivo transfection of dendritic cells. Nature Med 2: 1122–1128PubMedCrossRefGoogle Scholar
  14. Corr M, Lee DJ, Carson DA, Tighe H (1996) Gene vaccination with naked plasmid DNA: Mechanism of CTL priming. J Exp Med 184: 1555–1560CrossRefGoogle Scholar
  15. Cowdery JS, Chace JH, Yi A-K, Krieg AM (1996) Bacterial DNA induces NK cells to produce IFN-γ in vivo and increases the toxicity of lipopolysaccharides. J Immunol 156: 4570–4575PubMedGoogle Scholar
  16. Davis HL, Weeranta R, Waldshmidt TJ, Tygrett L, Schorr J, Krieg AM (1998) CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J Immunol 160: 870–876PubMedGoogle Scholar
  17. Drouet C, Shakov AN, Jongeneel CV (1991) Enhancers and transcription factors controlling the inducibility of the tumor necrosis factor-a promoter in primary macrophages. J Immunol 147: 1694–1700PubMedGoogle Scholar
  18. Fowles LF, Martin ML, Nelsen L, Stacey KJ, Redd D, Clark YM, Nagamine Y, McMahon M, Hume DA, Ostrowski MC (1998) Persistent activation of mitogen-activated protein kinases p42 and p44 and ets-2 phosphorylation in response to colony-stimulating factor 1/c-fins signalling. Mol Cell Biol 18: 5148–5156PubMedGoogle Scholar
  19. Gao JJ, Filla MB, Fultz MJ, Vogel SN, Russell SW, Murphy WJ (1998) Autocrine/paracrine IFN-αβ mediates the lipopolysaccharide-induced activation of transcription factor Statla in mouse macrophages: Pivotal role of Stat la in induction of the inducible nitric oxide synthase gene. J Immunol 161: 4803–4810PubMedGoogle Scholar
  20. Geppert TD, Whitehurst CE, Thompson P, Beutler B (1994) Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/MAPK pathway. Mol Med 1: 93–103PubMedGoogle Scholar
  21. Goodman JS, Van Uden JH, Kobayashi H, Broide D, Raz E (1998) DNA immunotherapeutics: new potential treatment modalities for allergic disease. Int Arch Allergy Immunol 116: 177–87PubMedCrossRefGoogle Scholar
  22. Groneberg J, Brown DT, Doerfler W (1975) Uptake and fate of the DNA of adenovirus type 2 in KB cells. Virology 64: 115–131PubMedCrossRefGoogle Scholar
  23. Gutierrez-Ramos JC, Bluethmann H (1997) Molecules and mechanisms operating in septic shock: lessons from knockout mice. Immunol Today 18: 329–334PubMedCrossRefGoogle Scholar
  24. Häcker H, Mischak H, Miethke T, Liptay S, Schmid R, Sparwasser T, Heeg K, Lipford GB, Wagner H (1998) CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 17: 6230–6240PubMedCrossRefGoogle Scholar
  25. Halpern MD, Kurlander RJ, Pisetsky DS (1996) Bacterial DNA induces murine interferon-y production by stimulation of interleukin-12 and tumour necrosis factor-a. Cell Immunol 167: 72–78PubMedCrossRefGoogle Scholar
  26. Halpern MD, Kurlander RJ, Pisetsky DS (1996) Bacterial DNA induces murine interferon-y production by stimulation of interleukin-12 and tumour necrosis factor-a. Cell Immunol 167: 72–78PubMedCrossRefGoogle Scholar
  27. Introna M, Hamilton TA, Kaufman RE, Adams DO, Bast RC Jr (1986) Treatment of murine peritoneal macrophages with bacterial lipopolysaccharide alters expression of c-fôs and c-myc oncogenes. J Immunol 137: 2711–2715PubMedGoogle Scholar
  28. Jakob T, Walker PS, Krieg AM, Udey MC, Vogel JC (1998) Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Thl responses by immunostimulatory DNA. J Immunol 161: 3042–3049PubMedGoogle Scholar
  29. Jarvis WD, Fornari FA Jr, Auer KL, Freemerman AJ, Szabo E, Birrer MJ, Johnson CR, Barbour SE, Dent P, Grant S (1997) Coordinate regulation of stress-and mitogen-activated protein kinases in the apoptotic actions of ceramide and sphingosine. Mol Pharmacol 52: 935–947PubMedGoogle Scholar
  30. Klinman DM, Yamshchikov G, Ishigatsubo Y (1997) Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol 158: 3635–3639PubMedGoogle Scholar
  31. Klinman DM, Sechler JMG, Conover J, Gu M, Rosenberg A (1998) Contribution of cells at the site of DNA vaccination to the generation of antigen-specific immunity and memory. J Immunol 160: 2388–2392PubMedGoogle Scholar
  32. Krieg AM, Love-Homan L, Yi AK, Harty JT (1998) CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol 161: 2428–2434PubMedGoogle Scholar
  33. Krieg AM, Yi A-K, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549PubMedCrossRefGoogle Scholar
  34. Leclerc C, Deriaud E, Rojas M, Whalen RG (1997) The preferential induction of a Th I immune response by DNA-based immunization is mediated by the immunostimulatory effect of plasmid DNA. Cell Immunol 179: 97–106PubMedCrossRefGoogle Scholar
  35. Liang H, Nishioka Y, Reich CF, Pisetsky DS, Lipsky PE (1996) Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest 98: 1119–1129PubMedCrossRefGoogle Scholar
  36. Lipford GB, Sparwasser T, Bauer M, Zimmerman S, Koch E-S, Heeg K, Wagner H (1997) Immunostimulatory DNA: sequence-dependent production of potentially harmful or useful cytokines. Eur J Immunol 27:3420–3426PubMedCrossRefGoogle Scholar
  37. Liu MK, Herrera-Velit P, Brownsey RW, Reiner NE (1994) CD14-dependent activation of protein kinase C and mitogen-activated protein kinases (p42 and p44) in human monocytes treated with bacterial lipopolysaccharide. J Immunol 153: 2642–2652PubMedGoogle Scholar
  38. Macfarlane DE, Manzel L (1998) Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol 160: 1122–1131PubMedGoogle Scholar
  39. Messina JP, Gilkeson GS, Pisetsky DA (1991) Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA. J Immunol 147: 1759–1764PubMedGoogle Scholar
  40. Myers MJ, Ghildyal N, Schook LB (1995) Endotoxin and interferon-gamma differentially regulate the transcriptional levels of proto-oncogenes and cytokine genes during the differentiation of colony-stimulating factor type- 1-derived macrophages. Immunology 85: 318–324PubMedGoogle Scholar
  41. Palucka KA, Taquet N, Sanchez-Chapuis F, Gluckman JC (1998) Dendritic cells as the terminal stage of monocyte differentiation. J Immunol 160: 4587–4595PubMedGoogle Scholar
  42. Pisetsky DS (1996) The immunologic properties of DNA. J Immunol 156: 421–423PubMedGoogle Scholar
  43. Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/ HeJ and C57BL/10ScCr mice: mutations in TIr4 gene. Science 282: 2085–2088PubMedCrossRefGoogle Scholar
  44. Redford TW, Yi AK, Ward CT, Krieg AM (1998) Cyclosporin A enhances IL-12 production by CpG motifs in bacterial DNA and synthetic oligodeoxynucleotides. J Immunol 161: 3930–3935PubMedGoogle Scholar
  45. Roman M, Martin-Orozco E, Goodman JS, Nguyen M-D, Sato Y, Ronaghy A, Kornbluth RS, Richman DD, Carson DA, Raz E (1997) Immunostimulatory DNA sequences function as T helper-1 promoting adjuvants. Nature Med 3: 849–854PubMedCrossRefGoogle Scholar
  46. Rozenberg-Arska M, van Strijp JAG, Hoekstra WPM, Verhoef J (1984) Effect of human polymorphonuclear and mononuclear leukocytes on chromosomal and plasmid DNA of Esckerichia soli. J Clin Invest 73: 1254–1262PubMedCrossRefGoogle Scholar
  47. Sands H, Gorey-Feret LJ, Cocuzza AJ, Hobbs FW, Chidester D, Trainor GL (1994) Biodistribution and metabolism of internally 3H-labelled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol Pharmacol 45: 932–943PubMedGoogle Scholar
  48. Sato Y, Roman M, Tighe H, Lee D, Corr M, Nguyen M-D, Silverman GJ, Lotz M, Carson DA, Raz E (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene imnunization. Science 273: 352–354PubMedCrossRefGoogle Scholar
  49. Schreck R, Meier B, Männel DN, Dröge W, Baeuerle PA (1992) Dithiocarbamates as potent inhibitors of nuclear factor KB activation in intact cells. J Exp Med 175: 1181–1194PubMedCrossRefGoogle Scholar
  50. Schubbert R, Renz D, Schmitz B, Doerfler W (1997) Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc Natl Acad Sci USA 94: 961–966PubMedCrossRefGoogle Scholar
  51. Scott P, Trinchieri G (1997) IL-12 as an adjuvant for cell-mediated immunity. Semin Immunol 9: 285–291PubMedCrossRefGoogle Scholar
  52. Shimada S, Yano O, Tokunaga T (1986) In vivo augmentation of natural killer cell activity with a deoxyribonucleic acid fraction of BCG. Jpn J Cancer Res 77: 808–816PubMedGoogle Scholar
  53. Sonehara K, Saito H, Kuramoto E, Yamamoto S, Yamamoto T, Tokunaga T (1996) Hexamer palindromic oligonucleotides with 5’-CG-3’ motif(s) induce production of interferon. J Interferon Cytokine Res 16: 799–803PubMedCrossRefGoogle Scholar
  54. Sparwasser T, Miethke T, Lipford G, Borschert K. Häcker H, Heeg K, Wagner H (1997a) Bacterial DNA causes septic shock. Nature 386: 336–337CrossRefGoogle Scholar
  55. Sparwasser T, Miethke T, Lipford G, Erdmann A, Häcker H, Heeg K, Wagner H (1997b) Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor. Eur J Immunol 27: 1671–1679PubMedCrossRefGoogle Scholar
  56. Sparvasser T, Koch ES, Vabulas RM, Heeg K, Lipford GB, Ellwart JW, Wagner H (1998) Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 28: 2045–2054CrossRefGoogle Scholar
  57. Spiegelberg HL, Tighe H, Roman M, Broide D, Raz E (1998) Inhibition of IgE formation and allergic inflammation by allergen gene immunization and by CpG motif immunostimulatory oligodeoxynucleotides. Allergy 53: 93–97PubMedCrossRefGoogle Scholar
  58. Spiegelberg HL, Tighe H, Roman M, Broide D, Raz E (1998) Inhibition of IgE formation and allergic inflammation by allergen gene immunization and by CpG motif immunostimulatory oligodeoxynucleotides. Allergy 53: 93–97PubMedCrossRefGoogle Scholar
  59. Stacey KJ, Fowles LF, Colman MS, Ostrowski MC, Hume DA (1995) Regulation of urokinase-type plasminogen activator gene transcription by macrophage colony stimulating factor. Mol Cell Biol 15: 3430–3441PubMedGoogle Scholar
  60. Stacey KJ, Sweet M, Hume DA (1996) Macrophages ingest and are activated by bacterial DNA. J Immunol 157: 2116–2122PubMedGoogle Scholar
  61. Sun S, Zhang X, Tough DF, Sprent J (1998) Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med 188: 2335–2342PubMedCrossRefGoogle Scholar
  62. Suzuki Y, Mizuno M, Packer L (1995) Transient overexpression of catalase does not inhibit TNF- or PMA- induced NF-KB activation. Biochem Biophys Res Comm 210: 537–541PubMedCrossRefGoogle Scholar
  63. Sweet MJ, Stacey KJ, Kakuda DK, Markovich D, Hume DA (1998a) IFN-γ primes macrophage responses to bacterial DNA. J Interferon Cytokine Res 18: 263–271PubMedCrossRefGoogle Scholar
  64. Sweet MJ, Stacey KJ, Ross IL, Ostrowski MC, Hume DA (1998b) Involvement of Ets, rel and Sp1-like proteins in lipopolysaccharide-mediated activation of the HIV-1 LTR in macrophages. J Inflammation 48: 67–83Google Scholar
  65. Takeda K, Tsutsui H, Yoshimoto T, Adachi O, Yoshida N, Kishimoto T, Okantura H, Nakanishi K, Akira S (1998) Defective NK cell activity and ThI response in IL-18-deficient mice. Immunity 8: 383–390PubMedCrossRefGoogle Scholar
  66. Tanaka T, Akira S, Yoshida K, Umemoto M, Yoneda Y, Shirafuji N, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T (1995) Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumour cytotoxicity by macrophages. Cell 80: 353–361PubMedCrossRefGoogle Scholar
  67. Tighe H, Corr M, Roman M, Raz E (1998) Gene vaccination: plasmid DNA is more than just a blueprint. Immunol Today 19: 89–97PubMedCrossRefGoogle Scholar
  68. Tokunaga T, Yamamoto S, Namba K (1988) A synthetic single-stranded DNA, poly(dG,dC), induces interferon-α/β and -γ, augments natural killer activity, and suppresses tumor growth. Jpn J Cancer Res 79: 682–686PubMedGoogle Scholar
  69. Tonkinson JL, Stein CA (1994) Patterns of intracellular compartmentalization, trafficking and acidification of 5’-fluorescein labeled phosphodiester and phosphorothioate oligodeoxynucleotides in HL60 cells. Nucl Acids Res 22: 4268–4275PubMedCrossRefGoogle Scholar
  70. Wang X, Martindale JL, Liu Y, Holbrook NJ (1998) The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 333: 291–300PubMedGoogle Scholar
  71. Xie QW, Kashibara Y, Nathan C (1994) Role of transcription factor NF-KB/Rel in induction of nitric oxide synthase. J Biol Chem 269: 4705–4708PubMedGoogle Scholar
  72. Xu X-X, Tessner TG, Rock CO, Jackowski S (1993) Phosphatidylcholine hydrolysis and c-myc expression are in collaborating mitogenic pathways activated by colony-stimulating factor 1. Mol Cell Biol 13: 1522–1533PubMedGoogle Scholar
  73. Yamamoto S, Yamamoto T, Kataoka T, Kuramoto E, Yano O, Tokunaga T (1992) Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment IFN-mediated natural killer activity. J Immunol 148: 4072–4076PubMedGoogle Scholar
  74. Yamamoto T, Yamamoto S, Kataoka T, Tokunaga T (1994) Lipofection of synthetic oligodeoxynucleotide having palindromic sequence of AACGTT to murine splenocytes enhances interferon production and natural killer activity. Microbiol Immunol 38: 831–836PubMedGoogle Scholar
  75. Yi A-K, Krieg AM (1998) Cutting Edge: Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J Immunol 161: 4493–4497PubMedGoogle Scholar
  76. Yi A-K, Klinman DM, Martin TL, Matson S, Krieg AM (1996) Rapid immune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol 157: 5394–5402PubMedGoogle Scholar
  77. Yi A-K, Chang M, Peckham DW, Krieg AM, Ashman RF (1998a) CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J Immunol 160: 5898–5906PubMedGoogle Scholar
  78. Yi A-K, Tuetken R, Redford T, Waldshmidt M, Kirsch J, Krieg AM (1998b) CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J Immunol 160: 4755–4761PubMedGoogle Scholar
  79. Yoshimoto T, Nagase H, Ishida T, Inoue J, Nariuchi H (1997) Induction of interleukin-12 p40 transcript by CD40 ligation via activation of nuclear factor-0B. Eur J Immunol 27: 3461–3470PubMedCrossRefGoogle Scholar
  80. Zhao Q, Song X, Waldschmidt T, Fisher E, Krieg AM (1996) Oligonucleotide uptake in human hematopoietic cells in increased in leukemia and is related to cellular activation. Blood 88: 1788–1795PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • K. J. Stacey
    • 1
  • D. P. Sester
    • 1
  • M. J. Sweet
    • 1
  • D. A. Hume
    • 1
  1. 1.Centre for Molecular and Cellular Biology and Departments of Biochemistry and MicrobiologyUniversity of QueenslandBrisbaneAustralia

Personalised recommendations