The Energy of a Graph: Old and New Results

  • Ivan Gutman


Let G be a graph possessing n vertices and m edges. The energy of G, denoted by E = E(G), is the sum of the absolute values of the eigenvalues of G. The connection between E and the total electron energy of a class of organic molecules is briefly outlined. Some (known) fundamental mathematical results on E are presented: the relation between E(G) and the characteristic polynomial of G, lower and upper bounds for E, especially those depending on n and m, graphs extremal with respect to E, n-vertex graphs for which E(G) > E(K n ). The characterization of the n-vertex graph(s) with maximal value of E is an open problem.


Bipartite Graph Characteristic Polynomial Variable Neighborhood Search Complete Bipartite Graph Molecular Orbital Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs — Theory and Application. Academic Press, New York, 1980; 2nd revised ed.: Barth, Heidelberg, 1995Google Scholar
  2. 2.
    Streitwieser, A.: Molecular Orbital Theory for Organic Chemists. Wiley, New York, 1961Google Scholar
  3. 3.
    Coulson, C. A., O’Leary, B., Mallion, R. B.: Hückel Theory for Organic Chemists. Academic Press, London, 1978Google Scholar
  4. 4.
    Günthard, H. H., Primas, H.: Zusammenhang von Graphentheorie und MO- Theorie von Molekeln mit Systemen konjugierter Bindungen. Helv. Chim. Acta 39 (1956) 1645–1653CrossRefGoogle Scholar
  5. 5.
    Gutman, I., Polansky, O. E.: Mathematical Concepts in Organic Chemistry. Springer-Verlag, Berlin, 1986CrossRefzbMATHGoogle Scholar
  6. 6.
    Dias, J. R.: Molecular Orbital Calculations Using Chemical Graph Theory. Springer-Verlag, Berlin, 1993CrossRefGoogle Scholar
  7. 7.
    Gutman, I.: The energy of a graph. Ber. Math-Statist. Sekt. Forschungszentrum Graz 103 (1978) 1–22Google Scholar
  8. 8.
    Coulson, C. A.: On the calculation of the energy in unsaturated hydrocarbon molecules. Proc. Cambridge Phil. Soc. 36 (1940) 201 - 203Google Scholar
  9. 9.
    Sachs, H.: Beziehungen zwischen den in einem Graphen entaltenen Kreisen und seinem charakteristischen Polynom. Publ. Math. (Debrecen) 11 (1964) 119–134MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals. XV. The Hückel rule. J. Chem. Phys. 64 (1976) 4921–4925CrossRefGoogle Scholar
  11. 11.
    Gutman, I.: A class of approximate topological formulas for total π-electron energy. J. Chem. Phys. 66 (1977) 1652–1655CrossRefGoogle Scholar
  12. 12.
    Gutman, I.: Proof of the Hückel rule. Chem. Phys. Lett. 46 (1977) 169–171CrossRefGoogle Scholar
  13. 13.
    Gutman, I.: Remark on the moment expansion of total π -electron energy. Theor. Chim. Acta 83 (1992) 313–318CrossRefGoogle Scholar
  14. 14.
    Hall, G. G.: The bond orders of alternant hydrocarbon molecules. Proc. Roy. Soc. London A 229 (1955) 251–259Google Scholar
  15. 15.
    Stepanov, N. F., Tatevskii, V. M.: Decomposing the energy of π -electrons in terms of bonds in the simplest variant of the molecular orbital method (in Russian). Zh. Strukt. Khim. 2 (1961) 204–208Google Scholar
  16. 16.
    Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals. Total π - electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972) 535–538CrossRefGoogle Scholar
  17. 17.
    Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals. The loop rule. Chem. Phys. Lett. 20 (1973) 257–260CrossRefGoogle Scholar
  18. 18.
    Y. Jiang, Y., Tang, A., Hoffmann, R.: Evaluation of moments and their application to Hückel molecular orbital theory. Theor. Chim. Acta 65 (1984) 255–265CrossRefGoogle Scholar
  19. 19.
    Schmalz, T. G., Živković, T., Klein, D. J.: Cluster expansion of the Hückel molecular orbital energy of acyclics: Application to pi resonance theory. Stud. Phys. Theor. Chem. 54 (1988) 173–190Google Scholar
  20. 20.
    Gutman, I.: Acyclic systems with extremal Hückel π -electron energy. Theor. Chim. Acta 45 (1977) 79–87CrossRefGoogle Scholar
  21. 21.
    Gutman, I.: Partial ordering of forests according to their characteristic polynomials. in: Hajnal, A., Sós, V. T. (Eds.), Combinatorics, North-Holland, Amsterdam, 1978, pp. 429–436Google Scholar
  22. 22.
    Zhang, F.: Two theorems of comparison of bipartite graphs by their energy. Kexue Tongbao 28 (1983) 726–730zbMATHGoogle Scholar
  23. 23.
    Zhang, F., Lai, Z.: Three theorems of comparison of trees by their energy. Science Exploration 3 (1983) 12–19MathSciNetGoogle Scholar
  24. 24.
    Gutman, I., Zhang, F.: On a quasiordering of bipartite graphs. Publ. Inst. Math. (Beograd) 40 (1986) 11–15MathSciNetGoogle Scholar
  25. 25.
    Gutman, I., Zhang, F.: On the ordering of graphs with respect to their matching numbers. Discr. Appl. Math. 15 (1986) 25–33MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zhang, Y., Zhang, F., Gutman, I.: On the ordering of bipartite graphs with respect to their characteristic polynomials. Coll. Sci. Papers Fac. Sci. Kragujevac 9 (1988) 9–20MathSciNetzbMATHGoogle Scholar
  27. 27.
    McCelland, B. J.: Properties of the latent roots of a matrix: The estimation of π -electron energies. J. Chem. Phys. 54 (1971) 640–643CrossRefGoogle Scholar
  28. 28.
    Caporossi, G., Cvetković, D., Gutman, I., Hansen, P.: Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy. J. Chem. Inf. Comput. Sci. 39 (1999) 984–996CrossRefGoogle Scholar
  29. 29.
    Gutman, I. Bounds for total π -electron energy. Chem. Phys. Lett. 24 (1974) 283–285Google Scholar
  30. 30.
    Gutman, I.: Bounds for total π -electron energy of conjugated hydrocarbons. Z. Phys. Chem. (Leipzig) 266 (1985) 59–64Google Scholar
  31. 31.
    Türker, L.: An upper bound for total π –electron energy of alternant hydrocarbons. Commun. Math. Chem. (MATCH) 16 (1984) 83–94Google Scholar
  32. 32.
    Gutman, I., Türker, L., Dias J. R.: Another upper bound for total π -electron energy of alternant hydrocarbons. Commun. Math. Chem. (MATCH) 19 (1986) 147 - 161Google Scholar
  33. 33.
    Gutman, I.: Bounds for Hückel total π -electron energy. Croat. Chem. Acta 51 (1978) 299–306Google Scholar
  34. 34.
    D. A. Bochvar, D. A., Stankevich, I. V.: Approximate formulas for some characteristics of the electronic structure of molecules. 1. Total electron energy (in Russian). Zh. Strukt. Khim. 21 (1980) 61–66Google Scholar
  35. 35.
    Gutman, I.: Total π -electron energy of benzenoid hydrocarbons. Topics Curr. Chem. 162 (1992) 29–63CrossRefGoogle Scholar
  36. 36.
    Cvetković, D., Gutman, I.: The computer system GRAPH: A useful tool in chemical graph theory. J. Comput. Chem. 7 (1986) 640–644CrossRefGoogle Scholar
  37. 37.
    Walikar, H. B., Ramane, H. S., Hampiholi, P. R.: On the energy of a graph, in: Balakrishnan, R., Mulder, H. M., Vijayakumar, A. (Eds.), Graph Connections, Allied Publishers, New Delhi, 1999, pp. 120–123Google Scholar
  38. 38.
    Sachs, H.: Über Teiler, Faktoren und charakteristische Polynome von Graphen, Teil II. Wiss. Z. TH Ilmenau 13 (1967) 405–412MathSciNetzbMATHGoogle Scholar
  39. 39.
    Gutman, I.: Hyperenergetic molecular graphs. J. Serb. Chem. Soc. 64 (1999) 199–205Google Scholar
  40. 40.
    Gutman, I., Pavlović, L.: The energy of some graphs with large number of edges. Bull. Acad. Serbe Sci. Arts (CI. Math. Natur.) 118 (1999) 35–50.zbMATHGoogle Scholar
  41. 41.
    Gutman, I., Soldatović, T., Vidović, D.: The energy of a graph and its size dependence. A Monte Carlo approach. Chem. Phys. Lett. 297 (1998) 428–432CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Ivan Gutman
    • 1
  1. 1.Faculty of ScienceUniversity of KragujevacYugoslavia

Personalised recommendations