Toll-Like Receptor Family Members and Their Ligands pp 145-154

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 270)

Bacterial CpG-DNA Licenses TLR9

  • S. Bauer
  • H. Wagner

Abstract

The family of Toll-like receptors (TLRs) plays an important role in the innate immune response to pathogens. TLRs sense pathogen associated molecular patterns (PAMP) and lead to the stimulation of immune cells. In man, so far ten members (TLR1-10) have been reported. This review focuses on TLR9 which is an essential component for the recognition of bacterial CpG-DNA. Expression of TLR9 and structural consideration as well as direct ligand interaction of TLR9 and CpG-DNA are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H (2002) Bacterial CpG-DNA and lipopolysaccharide activate Toll-like receptors at distinct cellular compartments. Eur J Immunol, in pressGoogle Scholar
  2. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732–738PubMedCrossRefGoogle Scholar
  3. Ballas ZK, Rasmussen WL, Krieg AM (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 157: 1840–1845PubMedGoogle Scholar
  4. Bauer M, Heeg K, Wagner H, Lipford GB (1999) DNA activates human immune cells through a CpG sequence-dependent manner. Immunology 97: 699–705PubMedCrossRefGoogle Scholar
  5. Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 98: 9237–9242PubMedCrossRefGoogle Scholar
  6. Blunt T, Gell D, Fox M, Taccioli GE, Lehmann AR, Jackson SP, Jeggo PA (1996) Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc Natl Acad Sci USA 93: 10285–10290PubMedCrossRefGoogle Scholar
  7. Chiaramonte MG, Hesse M, Cheever AW, Wynn TA (2000) CpG oligonucleotides can prophylactically immunize against Th2-mediated schistosome egg-induced pathology by an IL-12-independent mechanism. J Immunol 164: 973–985PubMedGoogle Scholar
  8. Cho HJ, Takabayashi K, Cheng PM, Nguyen MD, Corr M, Tuck S, Raz E (2000) Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat Biotechnol 18: 509–514PubMedCrossRefGoogle Scholar
  9. Chu W, Gong X, Li Z, Takabayashi K, Ouyang H, Chen Y, Lois A, Chen DJ, Li GC, Karin M, Raz E (2000) DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA. Cell 103: 909–918PubMedCrossRefGoogle Scholar
  10. Chuang T, Ulevitch RJ (2001) Identification of hTLRlO: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 1518: 157–161PubMedGoogle Scholar
  11. da Silva CJ, Soldau K, Christen U, Tobias PS, Ulevitch RJ (2001) Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex transfer from CD 14 to TLR4 and MD-2. J Biol Chem 276: 21129–21135CrossRefGoogle Scholar
  12. Danska JS, Holland DP, Mariathasan S, Williams KM, Guidos CJ (1996) Biochemical and genetic defects in the DNA-dependent protein kinase in murine scid lymphocytes. Mol Cell Biol 16: 5507–5517PubMedGoogle Scholar
  13. Du X, Poltorak A, Wei Y, Beutler B (2000) Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw 11: 362–371PubMedGoogle Scholar
  14. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O’Neill LA (2001) Mai (MyD88- adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413: 78–83PubMedCrossRefGoogle Scholar
  15. Fujita N, Shimotake N, Ohki I, Chiba T, Saya H, Shirakawa M, Nakao M (2000) Mechanism of transcriptional regulation by methyl-CpG binding protein MBD1. Mol. Cell Biol 20: 5107–5118Google Scholar
  16. Hacker H, Mischak H, Miethke T, Liptay S, Schmid R, Sparwasser T, Heeg K, Lipford GB, Wagner H (1998) CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 17: 6230–6240PubMedCrossRefGoogle Scholar
  17. Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H (2000) Immune Cell Activation by Bacterial CpG-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor Receptor-Associated Factor (TRAF)6. J Exp Med 192: 595–600PubMedCrossRefGoogle Scholar
  18. Hajjar AM, O’Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, Wilson CB (2001) Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol 166: 15–19PubMedGoogle Scholar
  19. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099–1103PubMedCrossRefGoogle Scholar
  20. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745PubMedCrossRefGoogle Scholar
  21. Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18: 6538–6547PubMedGoogle Scholar
  22. Horng T, Barton GM, Medzhitov R (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2: 835–841PubMedCrossRefGoogle Scholar
  23. Janeway CA Jr, Medzhitov R (1998) Introduction: the role of innate immunity in the adaptive immune response. Semin Immunol 10:349-350 Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194: 863–869Google Scholar
  24. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ (2001) Subsets of dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194:863–869PubMedCrossRefGoogle Scholar
  25. Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S (2001) Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 166: 5688–5694PubMedGoogle Scholar
  26. Kajava AV (1998) Structural diversity of leucine-rich repeat proteins. J Mol Biol 277: 519–527PubMedCrossRefGoogle Scholar
  27. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115–122PubMedCrossRefGoogle Scholar
  28. Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19: 415–421PubMedCrossRefGoogle Scholar
  29. Krieg AM, Wagner H (2000) Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today 21: 521–526PubMedCrossRefGoogle Scholar
  30. Krieg AM, Wu T, Weeratna R, Efler SM, Love-Homan L, Yang L, Yi AK, Short D, Davis HL (1998) Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci USA 95: 12631–12636PubMedCrossRefGoogle Scholar
  31. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549PubMedCrossRefGoogle Scholar
  32. Krug A, Rothenfusser S, Hornung V, Jahrsdorfer B, Blackwell S, Ballas ZK, Endres S, Krieg AM, Hartmann G (2001a) Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur. J Immunol 31: 2154–2163CrossRefGoogle Scholar
  33. Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, Bals R, Giese T, Engelmann H, Endres S, Krieg AM, Hartmann G (2001b) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 31: 3026–3037CrossRefGoogle Scholar
  34. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann J A (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 20; 86: 973–983CrossRefGoogle Scholar
  35. Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, Fenton MJ, Oikawa M, Qureshi N, Monks B, Finberg RW, Ingalls RR, Golenbock DT (2000) Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 105: 497–504PubMedCrossRefGoogle Scholar
  36. Lipford GB, Bauer M, Blank C, Reiter R, Wagner H, Heeg K (1997a) CpG-containing synthe¬tic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. Eur J Immunol 27: 2340–2344CrossRefGoogle Scholar
  37. Lipford GB, Sparwasser T, Bauer M, Zimmermann S, Koch ES, Heeg K, Wagner H (1997b) Immunostimulatory DNA: sequence-dependent production of potentially harmful or useful cytokines. Eur J Immunol 27: 3420–3426CrossRefGoogle Scholar
  38. Mansell A, Reinicke A, Worrall DM, O’Neill LA (2001) The serine protease inhibitor antithrombin III inhibits LPS-mediated NF-kappaB activation by TLR-4. FEBS Lett 508: 313–317PubMedCrossRefGoogle Scholar
  39. Medzhitov R (2001) Toll-like receptors and innate immunity. Nature reviews 1: 135–145PubMedCrossRefGoogle Scholar
  40. Medzhitov R, Janeway C Jr (2000) Innate immunity. N Engl J Med 343: 338–344Google Scholar
  41. Medzhitov R, Janeway CA Jr (1997a) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9: 4–9CrossRefGoogle Scholar
  42. Medzhitov R, Janeway CA Jr (1997b) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91: 295–298CrossRefGoogle Scholar
  43. Miettinen M, Sareneva T, Julkunen I, Matikainen S (2001) IFNs activate toll-like receptor gene expression in viral infections. Genes Immun 2: 349–355PubMedCrossRefGoogle Scholar
  44. Murakami S, Iwaki D, Mitsuzawa H, Sano H, Takahashi H, Voelker DR, Akino T, Kuroki Y (2001) Surfactant protein A inhibits peptidoglycan-induced TNF-alpha secretion in U937 cells and alveolar macrophages by direct interaction with toll-like receptor 2. J Biol Chem in pressGoogle Scholar
  45. Muzio M, Bosisio D, Polentarutti N, D’amico G, Stoppacciaro A, Mancinelli R, van’t Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164: 5998 - 6004PubMedGoogle Scholar
  46. O’Neill LA, Greene C (1998) Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. J Leukoc Biol 63: 650 - 657PubMedGoogle Scholar
  47. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 25; 97: 13766 - 13771CrossRefGoogle Scholar
  48. Poltorak A, Ricciardi-Castagnoli P, Citterio S, Beutler B (2000) Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci USA 97: 2163 - 2167PubMedCrossRefGoogle Scholar
  49. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 20; 95: 588 - 593CrossRefGoogle Scholar
  50. Schnare M, Holtdagger AC, Takeda K, Akira S, Medzhitov R (2000) Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr Biol 10: 1139 - 1142PubMedCrossRefGoogle Scholar
  51. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189: 1777 - 1782PubMedCrossRefGoogle Scholar
  52. Sparwasser T, Koch ES, Vabulas RM, Heeg K, Lipford GB, Ellwart JW, Wagner H (1998) Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 28: 2045 - 2054PubMedCrossRefGoogle Scholar
  53. Sparwasser T, Miethke T, Lipford G, Erdmann A, Hacker H, Heeg K, Wagner H (1997) Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-alpha-mediated shock. Eur J Immunol 27: 1671 - 1679PubMedCrossRefGoogle Scholar
  54. Takeshita F, Leifer CA, Gursel I, Ishii KJ, Takeshita S, Gursel M, Klinman DM (2001) Cutting edge: role of toll-like receptor 9 in cpg dna-induced activation of human cells. J Immunol 167: 3555 - 3558PubMedGoogle Scholar
  55. Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13: 933 - 940PubMedCrossRefGoogle Scholar
  56. Tighe H, Takabayashi K, Schwartz D, Van Nest G, Tuck S, Eiden JJ, Kagey-Sobotka A, Creticos PS, Lichtenstein LM, Spiegelberg HL, Raz E (2000) Conjugation of immunostimulatory DNA to the short ragweed allergen amb a 1 enhances its immunogenicity and reduces its allergenicity. J Allergy Clin Immunol 106: 124 - 134PubMedCrossRefGoogle Scholar
  57. Tokunaga T, Yamamoto H, Shimada S, Abe H, Fukuda T, Fujisawa Y, Furutani Y, Yano O, Kataoka T, Sudo T (1984) Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst 72: 955 - 962PubMedGoogle Scholar
  58. Verthelyi D, Ishii K, Gursel M, Takeshita F, Klinman D (2001) Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J Immunol 166: 2372 - 2377PubMedGoogle Scholar
  59. Wagner H (1999) Bacterial CpG DNA activates immune cells to signal infectious danger. Adv Immunol 73: 329 - 368PubMedCrossRefGoogle Scholar
  60. Zimmermann S, Egeter O, Hausmann S, Lipford GB, Rocken M, Wagner H, Heeg K (1998) CpG oligodeoxynucleotides trigger protective and curative Thl responses in lethal murine leishmaniasis. J Immunol 160: 3627 - 3630PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • S. Bauer
    • 1
  • H. Wagner
    • 1
  1. 1.Hygiene and ImmunologyInstitute for Medical MicrobiologyMunichGermany

Personalised recommendations