Advertisement

The HCMV Gene Products US2 and US11 Target MHC Class I Molecules for Degradation in the Cytosol

  • F. J. van der Wal
  • M. Kikkert
  • E. Wiertz
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 269)

Abstract

Over millions of years of coevolution with their hosts, viruses have developed highly effective strategies to elude the host immune system. The degradation of major histocompatibility complex (MHC) class I heavy chains by human cytomegalovirus (HCMV) is an example of this. Two HCMV proteins, US2 and US11, target newly synthesized MHC class I heavy chains for destruction via a pathway that involves ubiquitin-dependent retrograde transport, or “dislocation”, of the heavy chains from the ER to the cytosol, where the proteins are degraded by proteasomes. In this review, US2- and US11-mediated degradation of MHC class I heavy chains is discussed in relation to data concerning the degradation of other ER luminal proteins. A new, unified model for translocon-facilitated dislocation and degradation of MHC class I heavy chains is presented.

Keywords

Heavy Chain Major Histocompatibility Complex Class Cystic Fibrosis Transmembrane Conductance Regulator Protein Disulfide Isomerase Endoplasmic Reticulum Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn K, Meyer TH, Uebel S, Sempe P, Djaballah H, Yang Y, Peterson PA, Früh K, Tampe R (1996) Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J 15:3247–3255PubMedGoogle Scholar
  2. Barnes PD, Grundy JE (1992) Down-regulation of the class I HLA heterodimer and beta 2-microglobulin on the surface of cells infected with cytomegalovirus. J Gen Virol 73:2395–2403PubMedCrossRefGoogle Scholar
  3. Bebok Z, Mazzochi C, King SA, Hong JS, Sorscher EJ (1998) The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary. J Biol Chem 273:29873–29878PubMedCrossRefGoogle Scholar
  4. Beersma MF, Bijlmakers MJ, Ploegh HL (1993) Human cytomegalovirus down-regulates HLA class I expression by reducing the stability of class I H chains. J Immunol 151:4455–1464PubMedGoogle Scholar
  5. Bercovich B, Stancovski I, Mayer A, Blumenfeld N, Laszlo A, Schwartz AL, Ciechanover A (1997) Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem 272:9002–9010PubMedCrossRefGoogle Scholar
  6. Biederer T, Volkwein C, Sommer T (1996) Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway. EMBO J 15:2069–2076PubMedGoogle Scholar
  7. Biederer T, Volkwein C, Sommer T (1997) Role of Cuelp in ubiquitination and degradation at the ER surface. Science 278:1806–1809PubMedCrossRefGoogle Scholar
  8. Bordallo J, Plemper RK, Finger A, Wolf DH (1998) De3p/Hrdlp is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol Biol Cell 9:209–222PubMedGoogle Scholar
  9. Bordallo J, Wolf DH (1999) A RING-H2 linger motif is essential for the function of Der3/Hrdl in endoplasmic reticulum associated protein degradation in the yeast Saccharomyces cerevisiae. FEBS Lett 448:244–248PubMedCrossRefGoogle Scholar
  10. Brodsky JL, Werner ED, Dubas ME, Goeckeler JL, Kruse KB, McCracken AA (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274:3453–3460PubMedCrossRefGoogle Scholar
  11. Browne H, Smith G, Beck S, Minson T (1990) A complex between the MHC class I homologue encoded by human cytomegalovirus and beta 2 microglobulin. Nature 347:770–772PubMedCrossRefGoogle Scholar
  12. Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847PubMedCrossRefGoogle Scholar
  13. Daimon M, Susa S, Suzuki K, Kato T, Yamatani K, Sasaki H (1997) Identification of a human cDNA homologue to the Drosophila translocation protein 1 (Dtrpl). Biochem Biophys Res Commun 230:100–104CrossRefGoogle Scholar
  14. deVirgilio M, Weninger H, Ivessa NE (1998) Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem 273:9734–9743PubMedCrossRefGoogle Scholar
  15. Dusseljee S, Wubbolts R, Verwoerd D, Tulp A, Janssen H, Calafat J, Neefjes J (1998) Removal and degradation of the free MHC class II beta chain in the endoplasmic reticulum requires proteasomes and is accelerated by BFA. J Cell Sci 111:2217–2226PubMedGoogle Scholar
  16. Duvet S, Labiau O, Mir AM, Kmiecik D, Krag SS, Verbert A, Cacan R (1998) Cytosolic deglycosylation process of newly synthesized glycoproteins generates oligomannosides possessing one GlcNAc residue at the reducing end. Biochem J 335:389–396PubMedGoogle Scholar
  17. Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888PubMedCrossRefGoogle Scholar
  18. Ferrari DM, Soling HD (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 339:1–10PubMedCrossRefGoogle Scholar
  19. Fisher EA, Zhou M, Mitchell DM, Wu X. Omura S, Wang H, Goldberg AL. Ginsberg HN (1997) The degradation of apolipoprotein B100 is mediated by the ubiquitin-proteasome pathway and involves heat shock protein 70. J Biol Chem 272:20427–20434CrossRefGoogle Scholar
  20. Friedlander R, Jarosch E, Urban J, Volkwein C. Sommer T (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2:379–384PubMedCrossRefGoogle Scholar
  21. Fruh K, Ahn K, Djaballah H, Sempe P, van Endert PM, Tampe R. Peterson PA, Yang Y (1995) A viral inhibitor of peptide transporters for antigen presentation. Nature 375:415–418PubMedCrossRefGoogle Scholar
  22. Fujita K, Omura S, Silver J (1997) Rapid degradation of CD4 in cells expressing human immunodeficiency virus type 1 Env and Vpu is blocked by proteasome inhibitors. J Gen Virol 78:619–625PubMedGoogle Scholar
  23. Gardner RG, Shearer AG, Hampton RY (2001) In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol Cell Biol 21:4276–4291PubMedCrossRefGoogle Scholar
  24. Gardner RG, Swarbnck GM, Bays NW, Cronin SR. Wilhovsky S. Seelig L, Kim C. Hampton RY (2000) Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrdlp by Hrd3p. J Cell Biol 151:69–82PubMedCrossRefGoogle Scholar
  25. Gewurz BE, Wang EW, Tortorella D. Schust DJ. Ploegh HL (2001a) Human cytomegalovirus US2 endoplasmic reticulum-lumenal domain dictates association with major histocompatibility complex class I in a locus-specific manner. J Virol 75:5197–5204PubMedCrossRefGoogle Scholar
  26. Gewurz BE, Gaudet R, Tortorella D. Wang EW, Ploegh HL, Wiley DC (2001b) Antigen presentation subverted: Structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc Natl Acad Sci USA 98:6794–6799PubMedCrossRefGoogle Scholar
  27. Gilbert HF (1997) Protein disulfide isomerase and assisted protein folding. J Biol Chem 272:29399–29402PubMedCrossRefGoogle Scholar
  28. Gillece P, Luz JM, Lennarz WJ, de La Cruz FJ, Romisch K (1999) Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J Cell Biol 147:1443–1456PubMedCrossRefGoogle Scholar
  29. Gillece P, Pilon M, Romisch K (2000) The protein translocation channel mediates glycopeptide export across the endoplasmic reticulum membrane. Proc Natl Acad Sci USA 97:4609–4614PubMedCrossRefGoogle Scholar
  30. Ginsberg HN (1997) Role of lipid synthesis, chaperone proteins and proteasomes in the assembly and secretion of apoprotein B-containing lipoproteins from cultured liver cells. Clin Exp Pharmacol Physiol 24: A29–A32PubMedCrossRefGoogle Scholar
  31. Gusarova V, Caplan AJ, Brodsky JL, Fisher EA (2001) Apoprotein B degradation is promoted by the molecular chaperones hsp90 and hsp70. J Biol Chem 276:24891–24900PubMedCrossRefGoogle Scholar
  32. Hampton RY, Bhakta H (1997) Ubiquitin-mediated regulation of 3-hydroxy-3-methylglutaryl-CoA reductase. Proc Natl Acad Sci USA 94:12944–12948PubMedCrossRefGoogle Scholar
  33. Hampton RY, Gardner RG, Rine J (1996) Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell 7:2029–2044PubMedGoogle Scholar
  34. Heemels MT, Ploegh H (1995) Generation, translocation, and presentation of MHC class I-restricted peptides. Annu Rev Biochem 64:463–491PubMedCrossRefGoogle Scholar
  35. Hengel H, Brune W, Koszinowski UH (1998) Immune evasion by cytomegalovirus — survival strategies of a highly adapted opportunist. Trends Microbiol 6:190–197PubMedCrossRefGoogle Scholar
  36. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479PubMedCrossRefGoogle Scholar
  37. Hewitt EW, Gupta SS, Lehner PJ (2001) The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J 20:387–396PubMedCrossRefGoogle Scholar
  38. Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J, Ploegh H, Johnson D (1995) Herpes simplex virus turns off the TAP to evade host immunity. Nature 375:411–415PubMedCrossRefGoogle Scholar
  39. Hiller MM, Finger A, Schweiger M, Wolf DH (1996) ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273:1725–1728PubMedCrossRefGoogle Scholar
  40. Hofmann K, Stoffel W (1993) TMbase — a database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 374:166Google Scholar
  41. Hughes EA, Hammond C, Cresswell P (1997) Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc Natl Acad Sci USA 94:1896–1901PubMedCrossRefGoogle Scholar
  42. Huppa JB, Ploegh HL (1997) The alpha chain of the T cell antigen receptor is degraded in the cytosol. Immunity 7:113–122PubMedCrossRefGoogle Scholar
  43. Imamura T, Haruta T, Takata Y, Usui I, Iwata M, Ishihara H, Ishiki M, Ishibashi O, Ueno E, Sasaoka T, Kobayashi M (1998) Involvement of heat shock protein 90 in the degradation of mutant insulin receptors by the proteasome. J Biol Chem 273:11183–11188PubMedCrossRefGoogle Scholar
  44. Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135PubMedCrossRefGoogle Scholar
  45. Johnson AE, van Waes MA (1999) The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol 15:799–842PubMedCrossRefGoogle Scholar
  46. Jones TR, Hanson LK, Sun L, Slater JS, Stenberg RM, Campbell AE (1995) Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J Virol 69:4830–4841PubMedGoogle Scholar
  47. Jones TR, Sun L (1997) Human cytomegalovirus US2 destabilizes major histocompatibility complex class I heavy chains. J Virol 71:2970–2979PubMedGoogle Scholar
  48. Kikkert M, Hassink G, Barel M, Hirsch C, van der Wal FJ, Wiertz E (2001) Ubiquitination is essential for human cytomegalovirus US 11-mediated dislocation of MHC class I molecules from the endoplasmic reticulum to the cytosol. Biochem J 358:369–377PubMedCrossRefGoogle Scholar
  49. Kisselev AF, Akopian TN, Woo KM, Goldberg AL (1999) The sizes of peptides generated from protein by mammalian 26 and 20S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274:3363–3371PubMedCrossRefGoogle Scholar
  50. Klausner RD, Sitia R (1990) Protein degradation in the endoplasmic reticulum. Cell 62:611–614PubMedCrossRefGoogle Scholar
  51. Koopmann JO, Albring J, Huter E, Bulbuc N, Spee P, Neefjes J, Hammerling GJ, Momburg F (2000) Export of antigenic peptides from the endoplasmic reticulum intersects with retrograde protein translocation through the Sec61p channel. Immunity 13:117–127PubMedCrossRefGoogle Scholar
  52. Kopito RR (1997) ER quality control: the cytoplasmic connection. Cell 88:427–430PubMedCrossRefGoogle Scholar
  53. Kopito RR, Sitia R (2000) Aggresomes and Russell bodies — symptoms of cellular indigestion? EMBO Rep 1:225–231PubMedCrossRefGoogle Scholar
  54. Lee S, Yoon J, Park B, Jun Y, Jin M, Sung HC, Kim IH, Kang S, Choi EJ, Ahn BY, Ahn K (2000) Structural and functional dissection of human cytomegalovirus US3 in binding major histocompatibility complex class I molecules. J Virol 74:11262–11269PubMedCrossRefGoogle Scholar
  55. Lehner PJ, Karttunen JT, Wilkinson GW, Cresswell P (1997) The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc Natl Acad Sci USA 94:6904–6909PubMedCrossRefGoogle Scholar
  56. Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, Kurilla MG, Masucci MG (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685–688PubMedCrossRefGoogle Scholar
  57. Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG (1997) Inhibition of ubiquitin/ proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94:12616–12621PubMedCrossRefGoogle Scholar
  58. Liu Y, Choudhury P, Cabral CM, Sifers RN (1997) Intracellular disposal of incompletely folded human alpha 1-antitrypsin involves release from calnexin and post-translational trimming of asparagine-linked oligosaccharides. J Biol Chem 272:7946–7951PubMedCrossRefGoogle Scholar
  59. Liu Y, Choudhury P, Cabral CM, Sifers RN (1999) Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J Biol Chem 274:5861–5867PubMedCrossRefGoogle Scholar
  60. Machold RP, Wiertz EJ, Jones TR, Ploegh HL (1997) The HCMV gene products US11 and US2 differ in their ability to attack allelic forms of murine major histocompatibility complex (MHC) class I heavy chains. J Exp Med 185:363–366PubMedCrossRefGoogle Scholar
  61. Matlack KE, Misselwitz B, Plath K, Rapoport TA (1999) BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell 97:553–564PubMedCrossRefGoogle Scholar
  62. Mayer TU, Braun T, Jentsch S (1998) Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J 17:3251–3257PubMedCrossRefGoogle Scholar
  63. McCracken AA, Brodsky JL (1996) Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol 132:291–298PubMedCrossRefGoogle Scholar
  64. Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3:100–105PubMedCrossRefGoogle Scholar
  65. Meyer HA, Grau H, Kraft R, Kostka S, Prehn S, Kalies KU, Hartmann E (2000) Mammalian Sec61 is associated with Sec62 and Sec63. J Biol Chem 275:14550–14557PubMedCrossRefGoogle Scholar
  66. Noiva R (1999) Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Semin Cell Dev Biol 10:481–493PubMedCrossRefGoogle Scholar
  67. Norgaard P, Westphal V, Tachibana C, Alsoe L, Hoist B, Winther JR (2001) Functional differences in yeast protein disulfide isomerases. J Cell Biol 152:553–562PubMedCrossRefGoogle Scholar
  68. Oliver JD, Roderick HL, Llewellyn DH, High S (1999) ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell 10:2573–2582PubMedGoogle Scholar
  69. Oliver JD, van der Wal FJ, Bulleid NJ, High S (1997) Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 275:86–88PubMedCrossRefGoogle Scholar
  70. Park H, Suzuki T, Lennarz WJ (2001) Identification of proteins that interact with mammalian peptide: N-glycanase and implicate this hydrolase in the proteasome-dependent pathway for protein degradation. Proc Natl Acad Sci USAGoogle Scholar
  71. Pilon M, Schekman R, Romisch K (1997) Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J 16:4540–4548PubMedCrossRefGoogle Scholar
  72. Pipe SW, Morris JA, Shah J, Kaufman RJ (1998) Differential interaction of coagulation factor VIII and factor V with protein chaperones calnexin and calreticulin. J Biol Chem 273:8537–8544PubMedCrossRefGoogle Scholar
  73. Plemper RK, Bohmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388:891–895PubMedCrossRefGoogle Scholar
  74. Plemper RK, Deak PM, Otto RT, Wolf DH (1999) Re-entering the translocon from the lumenal side of the endoplasmic reticulum. Studies on mutated carboxypeptidase yscY species. FEBS Lett 443: 241–245PubMedCrossRefGoogle Scholar
  75. Ploegh HL (1998) Viral strategies of immune evasion. Science 280:248–253PubMedCrossRefGoogle Scholar
  76. Qu D, Teckman JH, Omura S, Perlmutter DH (1996) Degradation of a mutant secretory protein, alpha 1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J Biol Chem 271: 22791–22795PubMedCrossRefGoogle Scholar
  77. Reits EA, Vos JC, Gromme M, Neefjes J (2000) The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404:774–778PubMedCrossRefGoogle Scholar
  78. Reusch U, Muranyi W, Lucin P, Burgert HG, Hengel H, Koszinowski UH (1999) A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J 18:1081–1091PubMedCrossRefGoogle Scholar
  79. Rock KL, Goldberg AL (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17:739–779PubMedCrossRefGoogle Scholar
  80. Romisch K, Ali BR (1997) Similar processes mediate glycopeptide export from the endoplasmic reticulum in mammalian cells and Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:6730–6734CrossRefGoogle Scholar
  81. Romisch K, Schekman R (1992) Distinct processes mediate glycoprotein and glycopeptide export from the endoplasmic reticulum in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:7227–7231PubMedCrossRefGoogle Scholar
  82. Schubert U, Anton LC, Bacik I, Cox JH, Bour S, Bennink JR. Orlowski M, Strebel K, Yewdell JW (1998) CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J Virol 72:2280–2288Google Scholar
  83. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774PubMedCrossRefGoogle Scholar
  84. Schust DJ, Tortorella D, Seebach J, Phan C, Ploegh HL (1998) Trophoblast class I major histocompatibility complex (MHC) products are resistant to rapid degradation imposed by the human cytomegalovirus (HCMV) gene products US2 and US 11. J Exp Med 188:497–503PubMedCrossRefGoogle Scholar
  85. Shamu CE, Flierman D, Ploegh HL, Rapoport TA, Chau V (2001) Polyubiquitination is required for US 11-dependent movement of MHC class I heavy chain from endoplasmic reticulum into cytosol. Mol Biol Cell 12:2546–2555PubMedGoogle Scholar
  86. Shamu CE, Story CM, Rapoport TA, Ploegh HL (1999) The pathway of US 11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J Cell Biol 147:45—58PubMedCrossRefGoogle Scholar
  87. Skowronek MH, Rotter M, Haas IG (1999) Molecular characterization of a novel mammalian DnaJ-like Sec63p homolog. Biol Chem 380:1133–1138PubMedCrossRefGoogle Scholar
  88. Story CM, Furman MH, Ploegh HL (1999) The cytosolic tail of class I MHC heavy chain is required for its dislocation by the human cytomegalovirus US2 and US11 gene products. Proc Natl Acad Sci USA 96:8516–8521PubMedCrossRefGoogle Scholar
  89. Suzuki T, Park H, Hollingsworth NM, Sternglanz R, Lennarz WJ (2000) PNG1, a yeast gene encoding a highly conserved peptide: N-glycanase. J Cell Biol 149:1039–1052PubMedCrossRefGoogle Scholar
  90. Suzuki T, Park H, Kwofie MA, Lennarz WJ (2001) Rad23 provides a link between the Pngl deglycosylating enzyme and the 26S proteasome in yeast. J Biol Chem 276:21601–21607PubMedCrossRefGoogle Scholar
  91. Suzuki T, Seko A, Kitajima K, Inoue Y, Inoue S (1993) Identification of peptide. N-glycanase activity in mammalian-derived cultured cells. Biochem Biophys Res Commun 194:1124–1130PubMedCrossRefGoogle Scholar
  92. Suzuki T, Seko A, Kitajima K, Inoue Y, Inoue S (1994) Purification and enzymatic properties of peptide: N-glycanase from C3H mouse-derived L-929 fibroblast cells. Possible widespread occurrence of post-translational remodification of proteins by N-deglycosylation. J Biol Chem 269:17611–17618PubMedGoogle Scholar
  93. Takahashi N (1992) Glycosamidases. In: Takahashi N, Muramatsu T (eds) CRC Handbook of endo-glycosidases and glycoamidases. CRC Press Inc., Boca Raton, FL, pp 183–198Google Scholar
  94. Tiwari S, Weissman AM (2001) Endoplasmic reticulum (ER)-associated degradation of T cell receptor subunits. Involvement of ER-associated ubiquitin-conjugating enzymes (E2s). J Biol Chem 276:16193–16200PubMedCrossRefGoogle Scholar
  95. Tomazin R, Hill AB, Jugovic P, York I, van Endert P, Ploegh HL, Andrews DW, Johnson DC (1996) Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J15:3256—3266Google Scholar
  96. Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL (2000) Viral subversion of the immune system. Annu Rev Immunol 18:861–926PubMedCrossRefGoogle Scholar
  97. Tortorella D, Story CM, Huppa JB, Wiertz EJ, Jones TR, Bacik I, Bennink JR, Yewdell JW, Ploegh HL (1998) Dislocation of type I membrane proteins from the ER to the cytosol is sensitive to changes in redox potential. J Cell Biol 142:365–376PubMedCrossRefGoogle Scholar
  98. Tyedmers J, Lerner M, Bies C, Dudek J, Skowronek MH, Haas IG, Heim N, Nastainczyk W, Volkmer J, Zimmermann R (2000) Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proc Natl Acad Sci USA 97:7214–7219PubMedCrossRefGoogle Scholar
  99. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068PubMedCrossRefGoogle Scholar
  100. Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127PubMedCrossRefGoogle Scholar
  101. Wiertz E, Hill A, Tortorella D, Ploegh H (1997a) Cytomegaloviruses use multiple mechanisms to elude the host immune response. Immunol Lett 57:213–216PubMedCrossRefGoogle Scholar
  102. Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL (1996a) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779PubMedCrossRefGoogle Scholar
  103. Wiertz EJ, Mukherjee S, Ploegh HL (1997b) Viruses use stealth technology to escape from the host immune system. Mol Med Today 3:116–123PubMedCrossRefGoogle Scholar
  104. Wiertz EJHJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996b) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432–438PubMedCrossRefGoogle Scholar
  105. Wilhovsky S, Gardner R, Hampton R (2000) HRD gene dependence of endoplasmic reticulum-associated degradation. Mol Biol Cell 11:1697–1708PubMedGoogle Scholar
  106. Wilkinson BM, Tyson JR, Reid PJ, Stirling CJ (2000) Distinct domains within yeast Sec61p involved in post-translational translocation and protein dislocation. J Biol Chem 275:521–529PubMedCrossRefGoogle Scholar
  107. Winitz D, Shachar I, Elkabetz Y, Amitay R, Samuelov M, Bar-Nun S (1996) Degradation of distinct assembly forms of immunoglobulin M occurs in multiple sites in permeabilized B cells. J Biol Chem 271:27645–27651PubMedCrossRefGoogle Scholar
  108. Yamashita Y, Shimokata K, Mizuno S, Yamaguchi H, Nishiyama Y (1993) Down-regulation of the surface expression of class I MHC antigens by human cytomegalovirus. Virology 193:727–736PubMedCrossRefGoogle Scholar
  109. Yamashita Y, Shimokata K, Saga S, Mizuno S, Tsurumi T, Nishiyama Y (1994) Rapid degradation of the heavy chain of class I major histocompatibility complex antigens in the endoplasmic reticulum of human cytomegalovirus-infected cells. J Virol 68:7933–7943PubMedGoogle Scholar
  110. Yewdell JW (2001) Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol 11:294–297PubMedCrossRefGoogle Scholar
  111. Yu H, Kaung G, Kobayashi S, Kopito RR (1997) Cytosolic degradation of T-cell receptor alpha chains by the proteasome. J Biol Chem 272:20800–20804PubMedCrossRefGoogle Scholar
  112. Yu H, Kopito RR (1999) The role of multiubiquitination in dislocation and degradation of the alpha subunit of the T cell antigen receptor. J Biol Chem 274:36852–36858PubMedCrossRefGoogle Scholar
  113. Zhang Y, Nijbroek G, Sullivan ML, McCracken AA, Watkins SC, Michaelis S, Brodsky JL (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell 12:1303–1314PubMedGoogle Scholar
  114. Zhou MY, Schekman R (1999) The engagement of Sec61p in the ER dislocation process. Mol Cell 4: 925–934PubMedCrossRefGoogle Scholar
  115. Ziegler H, Muranyi W, Burgert HG, Kremmer E, Koszinowski UH (2000) The luminal part of the murine cytomegalovirus glycoprotein gp40 catalyzes the retention of MHC class I molecules. EMBO J 19:870–881PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • F. J. van der Wal
    • 1
  • M. Kikkert
    • 1
  • E. Wiertz
    • 1
  1. 1.Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations