Effects of the Cretaceous-Tertiary Boundary Event on Bony Fishes

  • Lionel Cavin
Part of the Impact Studies book series (IMPACTSTUD)


The effects of the Cretaceous-Tertiary boundary (KTB) event on the bony fishes are explored. The data are compiled by the analysis of the literature concerning bony fishes occurrences ranging from the Late Jurassic to the Paleocene, and resting on more than 750 references. The quality of the fossil record of bony fishes during the Campanian-Danian span is checked by calculation of the simple completeness metric (SCM). The analysis shows that (1) ten families (19% of the total) became extinct during or at the end of the Maastrichtian; (2) most of the victims (80%) were families exclusively restricted to marine environments; (3) most of the families (94%) with freshwater and/or brackish representatives during the Late Cretaceous crossed the KTB; (4) most of the victims (90%) were fast swimming and piscivorous predators. Extinction of this type of fishes is more easily explainable by a collapse of their food chain based on plankton. No extinction of planktivorous families, the intermediate level between plankton and piscivores, is observed. This fact is explain by ecological reasons (representatives of these families were living in brackish or freshwater) and by taxonomical reasons (phylogenetic relationships are unresolved and the families are not included in the analysis). These results are discussed in the light of some possible bias inherent to the fossil record and its study. The general trophic dependent pattern of extinctions agrees better with the expected consequences of a short-term catastrophic event than with a long term environmental change. It fits well the expected consequences of an impact: a break in the primary production by darkening of the atmosphere due to the dust generated by the impact, and followed by a chain of effects on the higher levels of the food chain, while detritus feeders and most of the following organisms survived, because there never was a lack of food at the base of the trophic chain.


Late Cretaceous Fossil Record Mass Extinction Bony Fish Planktivorous Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arambourg C (1952) Vertébrés fossiles des phosphates d’Afrique du Nord (Maroc, Algérie, Tunisie). Notes et Mémoires du Service Géologique du Maroc 92: 1–372.Google Scholar
  2. Arratia G (1997) Basal teleosts and teleostean phylogeny. Palaeo Ichthyologica 7: 5–168.Google Scholar
  3. Bardet N (1995) Evolution et extinction des reptiles marins au Cours du Mésozoïque.- Palaeovertebrata 24 (3–4): 177–283. Google Scholar
  4. Benton MJ (1987) Mass extinctions among families of non-marine tetrapods: the data. Mémoires de la Société Geologique de France, N. S. 150: 21–32.Google Scholar
  5. Benton MJ (1988) Mass extinctions in the fossil record of reptiles: Paraphyly, patchiness, and periodicity (?). In: Larwood GP (Ed) Extinction and survival in the fossil record. The Systematics Association. Oxford Science Publications, Special Volume 34: 269–294.Google Scholar
  6. Brito PM (1997) Revision des Aspidorhynchidae (Pisces, Actinopterygii) du Mésozoïque: Osteologie, relations phylogenetiques, donnees environnementales et biogeographiques. Geodiversitas 19 (4): 681–772.Google Scholar
  7. Bryant LJ (1987) Belonostomus (Teleostei: Aspidorhynchidae) from the Late Paleocene of North Dakota. Paleobios 43: 1–3.Google Scholar
  8. Buffetaut E (1987) Why the Maastrichtian regression did not cause terminal Cretaceous mass extinctions ? Mémoïre de la Societe Geologique de France, N. S. 150: 75–80.Google Scholar
  9. Buffetaut E (1990) Vertebrate extinctions and survival across the Cretaceous-Tertiary boundary. Tectonophysics 171: 337–345.CrossRefGoogle Scholar
  10. Buffetaut E (2000) Paleontological constraints on the duration of the K/T boundary extinction events, [abs] In: Catastrophic events and mass extinctions: Impacts and beyond, LPI Contribution No. 1053, Lunar and Planetary Institute, Houston, p 21–22. Google Scholar
  11. Cappetta H (1972) Les poissons Créetacés et Tertiaires du Bassin des Iullemmeden (République du Niger). Palaeovertebrata 5: 179–251.Google Scholar
  12. Cappetta H (1987) Exctinctions et renouvellement fauniques chez les sélaciens post-Jurassique. Memoire de la Société Geologique de France, N. S. 150: 113–131.Google Scholar
  13. Cavin L (in progress) Osteology of Goulmimichthys arambourgi and phylogenetic relationships of the Pachyrhizodontidae. Cavin L, Brito PM (in press) A new Lepisosteidae (Actinopterygii: Ginglymodi) from the Cretaceous of the Kem Kem Beds, Southern Morocco. Bulletin de la Société géologique de France.Google Scholar
  14. Cavin L, Martin M (1995) Les Actinopterygiens et la limite Cretace-Tertaire. Geobios Special Memoirs 19: 183–188.CrossRefGoogle Scholar
  15. Cavin L, Bardet N, Cappetta H, Gheerbrant E, Iarochene SM, Sudre J (2000) A new Palaeocene albulid (Teleostei: Elopomorpha) from the Ouled Abdoun Phosphatic Bassin, Morocco. Geological Magazine 137 (5): 583–591.CrossRefGoogle Scholar
  16. Clemens WA (1984) Evolution of Marsupials during the Cretaceous-Tertiary transition. Third Symposium on Mesozoic Terrestrial Ecosystems, Tübingen, Attempto Verlag: 47–52.Google Scholar
  17. Dutheil DB (1999) The first articulated fossil Cladistian: Serenoichthys kemkemensis, gen. et sp. nov., from the Cretaceous of Morocco. Journal of Vertebrate Paleontology 19: 243–246.CrossRefGoogle Scholar
  18. Fara E (2000) Diversity of Callovian-Ypresian (Middle Jurassic-Eocene) tetrapod families and selectivity of extinctions at the K/T boundary. Geobios, 33: 387–396.CrossRefGoogle Scholar
  19. Fara E, Benton MJ (2000) The fossil record of cretaceous tetrapods. Palaios, 15: 161–165.Google Scholar
  20. Feduccia A (1999) The Origin and Evolution of Birds, Yale University Press, 465 p.Google Scholar
  21. Forey PL (1973) A revision of the Elopiform fishes, fossil and recent. Bulletin of the British Museum (Natural History) (Geol.) Suppl. 10: 1–222.Google Scholar
  22. Forey PL (1997) A Cretaceous Notopterid (Pisces: Osteoglossomorpha) from Morocco. South African Journal of Science 93: 564–569.Google Scholar
  23. Gallagher WB, Parris DC, Spamer EE (1986) Paleontology, biostratigraphy, and depositional environments of the Cretaceous-Tertiary transition in the New Jersey coastal plain. The Mosasaur 3: 1–35.Google Scholar
  24. Gardiner BG (1984) Sturgeons as living fossils. In: Eldredge N, Stanleys SM (Eds) Living Fossils, Springer-Verlag, New York, 148–152.Google Scholar
  25. Gardiner BG (1993) Osteichthyes: Basal Actinopterygians. In: Benton MJ (Ed) Fossils Record 2 London, Chapman and Hall: 611–619.Google Scholar
  26. Gayet M, Meunier FJ (1983) Ecailles actuelles et fossiles d’ostéoglossiformes (Pisces, Teleostei). Comptes Rendus de l’Acadzémie des Sciences, Paris, Série II, 297: 867–870.Google Scholar
  27. Gayet M, Meunier F (1998) Maastrichtian to Early Paleocene freshwater Osteichthyes of Bolivia: additions and comments. In: Malabara LRR, Vari RE, Lucena RP, Lucena CAS (Eds) Phylogeny and classification of neotropical fishes. Porto Alegre, Edipucrs: 85–110.Google Scholar
  28. Gayet M, Marshall LG, Sempere T (1991) The Mesozoic and Paleocene vertebrates of Bolivia and their stratigraphic context: A review. In: Suarez-Soruco R (Ed) Fosiles y facies de Bolivia Vol. I Vertebrados. Santa Cruz-Bolivia, Revista Tecnica de Ypfb. 12: 393–433.Google Scholar
  29. Grande L (1985) Recent and fossil clupeomorph fishes with material for revision of the subgroups of Clupeoids. Bulletin of the American Mueum of Natural History 181: 231–272.Google Scholar
  30. Jin F (1999) Middle and Late Mesozoic Acipenseriforms from Northern Hebei and Western Liaoling, China. In: Chen PJ, Jin F (Eds) Palaeoworld, Hefei, China, Press of University of Science and Technology of China, 11: 188–261.Google Scholar
  31. Kelle G (2000) Mass extinctions, catastrophes and environmental changes [abs]. In: Catastrophic Events and Mass Extinctions: Impacts and Beyond, LPI Contribution No. 1053, Lunar and Planetary Institute, Houston, pp 21–22.Google Scholar
  32. Leriche M (1929) Les poissons du Crétacé marin de la Belgique et du Limbourg Hollandais (Note Preliminaire). Bulletin de la Sociétée beige de Geologie et d’Hydrologie, 37: 199–299.Google Scholar
  33. Lowe-McConnell RH (1991) Ecological studies in tropical fish communities. Cambridge University Press, Cambridge, 382 pp.Google Scholar
  34. Lundberg JG (1998) The temporal context for the diversification of neotropical fishes. In: LRR Malabara, RE, Vari, RP, Lucena, ZMS, Lucena, CAS (Eds) Phylogeny and classification of neotropical fishes. Porto Alegre, Edipucrs: 49–68.Google Scholar
  35. MacLeod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffery C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhar E, Young JR (1997) The Cretaceous-Tertiary biotic transition. Journal of the Geological Society, London 154: 265–292.CrossRefGoogle Scholar
  36. Mohabey DM, Udhoji SG (1996) Fauna and flora from Late Cretaceous (Maastrichtian) non- marine lameta sediments associated with Deccan volcanic episode, Maharashtra: Its relevance to the K-T boundary problem, paleoenvironment and paleogeography. Gondwana Geological Magazine, Spl. Vol. 2, Nat. Symp. Deccan Flood Basalts, India, 349–364.Google Scholar
  37. Nolf D, Stringer GL (1996) Cretaceous fish otoliths - A synthesis of the North American record. In: Arratia G, Viohl G (Eds) Mesozoic Fishes - Systematics and Paleoecology. Verlag Dr. Friedrich Pfeil, Miinchen, Germany, 433–459.Google Scholar
  38. Patterson C (1993a) Osteichthyes: Teleostei. In: Benton MJ (Ed) Fossils Record 2. London, Chapman and Hall: 621–656.Google Scholar
  39. Patterson C (1993b) An overview of the early fossil record of Acanthomorphs. Bulletin of Marine Science 52: 29–59.Google Scholar
  40. Patterson C, Smith AB (1987) Is the periodicity of extinctions a taxonomic artefact? Nature 330: 248–252.CrossRefGoogle Scholar
  41. Patterson C, Smith AB (1989) Periodicity in extinction: The role of systematics. Ecology 70: 802–811.CrossRefGoogle Scholar
  42. Robeck HE, Maley CC, Donoghue MJ (2000) Taxonomy and temporal diversity patterns. 157 Paleobiology 26: 171–187.CrossRefGoogle Scholar
  43. Schwarzhans W (1996) Otoliths from the Maastrichtian of Bavaria and their evolutionary significance. In: Arratia G, Viohl G (Eds) Mesozoic Fishes - Systematics and Paleoecology, Verlag Dr. Friedrich Pfeil, Miinchen, Germany: 417–431.Google Scholar
  44. Sheehan PM, Fastovsky DE (1992) Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, Eastern Montana. Geology 20: 556–560.CrossRefGoogle Scholar
  45. Signor PW, Lipps JH (1982) Sampling bias, gradual extinction patterns and catastrophes in the fossil record. In: Silver LT, Schultz PH (Eds) Geological implications of impacts of large asteroids and comets on the Earth. Geological Society of America, Special Paper 190: 291–296.Google Scholar
  46. Thomson KS (1977) The pattern of diversification among fishes. Patterns of evolution as illustrated by the fossil record. In: Hallam A (Ed) Developments in palaeontology and stratigraphy. New-York, Elsevier Scientific Publishing Company 5: 377–404.Google Scholar
  47. Taverne L (1980) Osteologie et position systématique du genre Platinx (Pisces, Teleostei) de L’éocène du Monte Bolca (Italie). Bulletin de l’Académie Roy ale de Belgique (Classe des Sciences) 66: 873–889.Google Scholar
  48. Taverne L (1997) Ostéeologie et position systématique d’Audenaerdia casieri, Téléostéen Clupéomorphe (Pisces) du Santonien (Crétacé) de Vonso, Bas-Zaïre. Musée Royal d’Afrique Centrale, Tervuren (Belgique), Departement Geologie et Mines, Rapport Annuel 1995 et 1996: 203–213.Google Scholar
  49. Taverne L (1999) Ostéologie et position systématique d’Arratiaelops vectensis gen. nov., Téléostéen elopiforme du Wealdien (Crétacé Inférieur) d’Angleterre et de Belgique. Bulletin de L’institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 69: 77–96.Google Scholar
  50. Vasse D, Hua S (1998) Diversité des crocodiliens du Crétacé Supérieur et du Paléogène. Influences et limites de la crise Maastrichtien-Paléocéne et des “Terminal Eocene Events”. Oryctos 1: 65–77.Google Scholar
  51. Wenz S (1965) Les poissons Albiens de Vallentigny (Aube). Annales de Paléontologie, Vertébrés 51: 3–23.Google Scholar
  52. Wenz S, Brito PM (1992) Première découverte de Lepisosteidae (Pisces, Actinopterygii) dans le Crétacé Inférieur de la Chapada do Araripe (N-E du Brésil). Conséquence sur la phylogénie des Ginglymodi. Comptes Rendus de l’Académie des Sciences, Serie II, Paris 314: 1519–1525.Google Scholar
  53. Wenz S, Poyato-Ariza FJ (1994) Les Actinoptérygiens juvéniles du Crétacé Inferieur du Montsec et de Las Hoyas (Espagne). Géobios Special Memoires. 16: 203–212.CrossRefGoogle Scholar
  54. Wilson MVH, Brinkman DB, Neuman AG (1992) Cretaceous Esocoidei (Teleostei): Early radiation of the pikes in North American fresh waters. Journal of Paleontology 66: 839–846.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Lionel Cavin
    • 1
  1. 1.GIS PalSédCo (Toulouse-Espéraza)Musée des dinosauresEspérazaFrance

Personalised recommendations