Forest Decline and Ozone pp 163-200

Part of the Ecological Studies book series (ECOLSTUD, volume 127)

Ozone Responses of Trees: Results from Controlled Chamber Exposures at the GSF Phytotron

  • C. Langebartels
  • D. Ernst
  • W. Heller
  • C. Lütz
  • H.-D. Payer
  • H. SandermannJr.

Abstract

Tree damage in the field is judged primarily by visual inspection (Forschungsbeirat Waldschäden 1989; Chappelka and Chevone 1992) using needle and leaf discoloration, premature abscission and crown transparency as the principle and rather nonspecific symptoms. A diagnostic field guide is available for distinguishing “novel” decline symptoms from known mineral deficiencies and frost or insect damage (Hartmann et al. 1988).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles FB, Morgan PW, Saltveit ME (eds) (1992) Ethylene in plant biology. Academic Press, San DiegoGoogle Scholar
  2. Barnes JD, Pfirrmann T, Steiner K, Lütz C, Busch U, Küchenhoff H, Payer HD (1995) Effects of elevated CO2, 03 and K deficiency on Norway spruce (Picea abies [L.] Karst.). II. Seasonal changes in photosynthesis and non-structural carbohydrate content. Plant Cell Environ 18:1345–1357Google Scholar
  3. Bauer S, Galliano H, Pfeiffer F, Meßner B, Sandermann H, Ernst D (1993) Isolation and characterization of a cDNA clone encoding a novel short-chain alcohol dehydrogenase from Norway spruce (Picea abies [L.] Karst.). Plant Physiol 103:1479–1480PubMedGoogle Scholar
  4. Betz C, Tuomainen J, Kangasjärvi J, Ernst D, Yin Z-H, Langebartels C, Sandermann H (1995) Ozone activation of ethylene biosynthesis in tomato. In: Chappelle E, Lichtenthaler HK, Sandermann H (eds) Conference on vegetation stress, Neuherberg, Abstr, p 13Google Scholar
  5. Blank L, Lütz C (eds) (1990) Tree exposure experiment in closed chambers. Environ Pollut 64:189–395Google Scholar
  6. Boller T (1993) Antimicrobial functions of the plant hydrolases, chitinase and ß-1,3glucanase. In: Fritig B, Legrand M (eds) Developments in plant pathology. Mechanisms of plant defense responses. Kluwer, Dordrecht, pp 391–400Google Scholar
  7. Bonello P, Heller W, Sandermann H (1993) Ozone effects on root-disease susceptibility and defence responses in mycorrhizal and non-mycorrhizal seedlings of Scots pine (Pinus sylvestris L.). New Phytol 124:653–663Google Scholar
  8. Bors W, Langebartels C, Michel C, Sandermann H (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28:1589–1595Google Scholar
  9. Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343–355PubMedGoogle Scholar
  10. Bors W, Heller W, Michel C, Stettmaier K (1996) Flavonoids and polyphenols: chemistry and biology. In: Cadenas E, Packer L (eds) Handbook of antioxidants. Marcel Dekker, New York, pp 409–466Google Scholar
  11. Bosch C, Pfannkuch E, Baum U, Rehfuess KE (1983) Über die Erkrankung der Fichte (Picea abies) in den Hochlagen des Bayerischen Waldes. Forstwiss Centralbl (Hamb) 102:167–181Google Scholar
  12. Bowles DJ (1990) Defense-related proteins in higher plants. Annu Rev Biochem 59:873–907PubMedGoogle Scholar
  13. Castillo FJ, Miller PR, Greppin H (1987) Extracellular biochemical markers of photo-chemical oxidant air pollution damage to Norway spruce. Experientia 43:111–115Google Scholar
  14. Chappelka AH, Chevone BI (1992) Tree response to ozone. In: Lefohn AS (ed) Surfacelevel ozone exposures and their effects on vegetation. Lewis, Chelsea, pp 271–324Google Scholar
  15. Chen Y-M, Wellburn AR (1989) Enhanced ethylene emissions from red and Norwayspruce exposed to acidic mists. Plant Physiol 91:357–361PubMedGoogle Scholar
  16. Conklin PL, Last RL (1995) Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol 109:203–212PubMedGoogle Scholar
  17. Darrall NM (1989) The effect of air pollutants on physiological processes in plants. Plant Cell Environ 12:1–30Google Scholar
  18. Dixon RA, Harrison MJ, Lamb CJ (1994) Early events in the activation of plant defense responses. Annu Rev Phytopathol 32:479–501Google Scholar
  19. Doehring T, Koefferlein M, Thiel S, Seidlitz HK (1996) Spectral shaping of artificial UV-B irradiation for vegetation stress research. J Plant Physiol 148:115–119Google Scholar
  20. Dohmen GP, Koppers A, Langebartels C (1990) Biochemical response of Norway spruce (Picea abies [L.] Karst.) towards 14-month exposure to ozone and acid mist: Effects on amino acid, glutathione and polyamine titers. Environ Pollut 64:375–383PubMedGoogle Scholar
  21. Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268:667675Google Scholar
  22. Eckey-Kaltenbach H, Ernst D, Heller W, Sandermann H (1994) Biochemical plant responses to ozone. IV. Cross induction of defensive pathways in parsley (Petroselinum crispum L.) plants. Plant Physiol 104:67–74PubMedGoogle Scholar
  23. Elstner EF, Osswald W (1994) Mechanisms of oxygen activation during plant stress. Proc R Soc Edinb 102B:131–154Google Scholar
  24. Elstner EF, Osswald W, Youngman RJ (1985) Basic mechanisms of pigment bleaching and loss of structural resistance in spruce (Picea abies) needles: advances in phytomedical diagnostics. Experientia 41:591–597Google Scholar
  25. Ernst D, Schraudner M, Langebartels C, Sandermann H (1992) Ozone-induced changes of mRNA levels of ß-1,3-glucanase, chitinase and `pathogenesis-related’ protein lb in tobacco plants. Plant Mol Biol 20:673–682PubMedGoogle Scholar
  26. Flores HE, Protacio CM, Signs MW (1989) Primary and secondary metabolism of polyamines in plants. Recent Adv Phytochem 23:329–393Google Scholar
  27. Forschungsbeirat Waldschäden/Luftverunreinigungen (ed) (1989) Dritter Bericht, Kernforschungszentrum Karlsruhe, Karlsruhe, ISSN 0931–7805Google Scholar
  28. Foyer C, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717Google Scholar
  29. Frey DJ, Phillips IDJ (1977) Photosynthesis of conifers in relation to annual growth cycles and dry matter production. Physiol Plant 40:300–306Google Scholar
  30. Führer G, Dunkl M, Knoppik D, Selinger H, Blank LW, Payer H-D, Lange OL (1990) Effects of low level long-term ozone fumigation and acid mist on photosynthesis and stomata of clonal Norway spruce (Picea abies [L.] Karst.). Environ Pollut 64:279–293PubMedGoogle Scholar
  31. Galliano H, Cabané M, Eckerskorn C, Lottspeich F, Sandermann H, Ernst D (1993a) Molecular cloning, sequence analysis and elicitor-/ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Mol Biol 23:145–156PubMedGoogle Scholar
  32. Galliano H, Heller W, Sandermann H (1993b) Ozone induction and purification of spruce cinnamyl alcohol dehydrogenase. Phytochemistry 32:557–563Google Scholar
  33. Grennfelt P, Beck JP (1994) Ozone concentrations in Europe in relation to different concepts of the critical levels. In: Fuhrer J, Achermann A (eds) Critical levels for ozone. UN-ECE workshop report, FAC Bern, pp 184–194Google Scholar
  34. Großkopf E, Wegener-Strake A, Sandermann H, Ernst D (1994) Ozone-induced metabolic changes in Scots pine: mRNA isolation and analysis of in vitro translated proteins. Can J For Res 24:2030–2033Google Scholar
  35. Guderian R (ed) (1985) Air pollution by photochemical oxidants. Formation, transport, control and effects on plants. Ecological Studies vol 52. Springer, Berlin Heidelberg New YorkGoogle Scholar
  36. Guderian R, Köppers K, Six R (1985) Wirkungen von Ozon, Schwefeldioxid und Stickstoffdioxid auf Fichte und Pappel bei unterschiedlicher Versorgung mit Magnesium und Kalzium sowie auf die Blattflechte Hypogymnia physodes. VDI Berichte 560:657701Google Scholar
  37. Gunderson CA, Taylor GE (1991) Kinetics of inhibition of foliar gas exchange by exogenous ethylene: an ultrasensitive response. New Phytol 110:517–524Google Scholar
  38. Harborne JB (1993) Introduction to ecological biochemistry. Academic Press, LondonGoogle Scholar
  39. Hartmann G, Nienhaus F, Butin H (1988) Farbatlas Waldschäden. Diagnose von Baumkrankheiten. Ulmer, StuttgartGoogle Scholar
  40. Heath RL (1988) Biochemical mechanisms of pollutant stress. In: Heck WW, Taylor OC, Tingey DT (eds) Assessment of crop loss from air pollutants. Elsevier, London, pp 259–286Google Scholar
  41. Heller W, Rosemann D, Osswald WF, Benz B, Schönwitz R, Lohwasser K, Kloos M, Sandermann H (1990) Biochemical response of Norway spruce (Picea abies [L.] Karst.) towards 14-month exposure to ozone and acid mist: Part I - Effects on polyphenol and monoterpene metabolism. Environ Pollut 64:353–366Google Scholar
  42. Heller W, Ernst D, Langebartels C, Sandermann H (1995) Induction of polyphenol biosynthesis in plants during development and environmental stress. In: Brouillard R, Jay M, Scalbert A (eds) Polyphenols 94. INRA, Paris pp 67–78Google Scholar
  43. Hohlfeld H, Lütz C, Strack D (1991) Phosphoenolpyruvate carboxylase activity in Norway spruce needles: effects of air pollutants under controlled conditions. Z Naturforsch 46c:502–505Google Scholar
  44. Horton P, Ruban A, Rees D, Pascal A, Noctor G, Young A (1991) Control of the light harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein-complex. FEBS Lett 292:1–4PubMedGoogle Scholar
  45. Howell RK (1970) Influence of air pollution on quantities of caffeic acid isolated from leaves of Phaseolus vulgaris. Phytopathology 60:1626–1629Google Scholar
  46. Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158Google Scholar
  47. Jungblut TP, Schnitzler J-P, Heller W, Hertkorn N, Metzger JW, Szymczak W, Sandermann H (1995) Structures of UV-B induced sunscreen pigments of Scots pine (Pinus sylvestris L.). Angew Chem Int Ed Engl 34:312–314Google Scholar
  48. Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17:783–794Google Scholar
  49. Kärenlampi SO, Airaksinen K, Miettinen ATE, Kokko HI, Holopainen JK, Kärenlampi LV, Karjalainen RO (1994) Pathogenesis-related proteins in ozone-exposed Norway spruce [Picea abies (L.) Karst.]. New Phytol 126:81–89Google Scholar
  50. Keen NT, Taylor OC (1975) Ozone injury in soybeans. Isoflavonoid accumulation is related to necrosis. Plant Physiol 55:731–733PubMedGoogle Scholar
  51. Keller T, Häsler R (1987) Some effects of long-term ozone fumigations on Norway spruce.I. Gas exchange and stomatal response. Trees 1:129–133Google Scholar
  52. Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307Google Scholar
  53. Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J (1994)Induction of systemic acquired disease resistance in plants by chemicals. Annu Rev Phytopathol 32:439–459PubMedGoogle Scholar
  54. Kiciniski HG, Kettrup A, Boos KS, Masuch G (1988) Single and combined effects of continuous and discontinuous 03 and SO2 emission on Norway spruce needles.II. Metabolic changes. Int J Environ Anal Chem 32:213–241Google Scholar
  55. Kieliszewski MJ, Lamport DTA (1994) Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J 5:157–172Google Scholar
  56. Klumpp A, Klumpp G, Guderian R (1988) Wuchsleistung und äußere Schädigungsmerkmale bei Buche nach Einwirkung von Ozon, Schwefeldioxid und Stickstoffdioxid Allg Forstztg 26:731–734Google Scholar
  57. Kombrink E, Somssich IE (1995) Defense responses of plants to pathogens. Adv Bot Res 21:1–34Google Scholar
  58. Köstner B, Czygan F, Lange 0 (1990) An analysis of needle yellowing in healthy and chlorotic Norway spruce (Picea abies) in a forest decline area of the Fichtelgebirge (N.E.Bavaria). I Annual time-course changes in chloroplast pigments for five different needle age classes. Trees 4:55–67Google Scholar
  59. Koukol J, Dugger WM (1967) Anthocyanin formation as a response to ozone and smog treatment of Rumex crispus L. Plant Physiol 42:1023–1024PubMedGoogle Scholar
  60. Krause GHM, Prinz B (1989) Experimentelle Untersuchungen der LIS zur Aufkärung möglicher Ursachen der neuartigen Waldschäden. LIS-Berichte No 80Google Scholar
  61. Lange BM, Trost M, Heller W, Langebartels C, Sandermann H (1994) Elicitor-induced formation of free and cell-wall-bound stilbenes in cell-suspension cultures of Scots pine (Pinus sylvestris L.). Planta 194:143–148Google Scholar
  62. Lange BM, Lapierre C, Sandermann H (1995) Elicitor-induced spruce stress lignin. Structural similarity to early developmental lignins. Plant Physiol 108:1277–1287PubMedGoogle Scholar
  63. Lange OL, Heber U, Schulze E-D, Ziegler H (1989) Atmospheric pollutants and plant metabolism. In: Schulze ED, Lange OL, Oren S (eds) Forest decline and air pollution. A study of spruce (Picea abies) on acidic soils. Ecological studies, vol 77. Springer, Berlin Heidelberg New York pp 238–273Google Scholar
  64. Langebartels C, Führer G, Häckl B, Heller W, Kloos M, Payer H-D, Schmitt R, Sandermann H (1989) Dose-dependent biochemical reactions of Norway spruce to ozone fumigation. In: Bucher JB, Bucher-Wallin I (eds) Air pollution and forest decline. Proc 14th IUFRO Meeting, Birmensdorf, pp 446–469Google Scholar
  65. Langebartels C, Heller W, Kerner K, Leonardi S, Rosemann D, Schraudner M, Trost M, Sandermann H (1990) Ozone-induced defense reactions in plants. In: Payer HD, Pfirrmann T, Mathy P (eds) Environmental research with plants in closed chambers. Air pollution research reports, vol 26. CEC, Brussels, pp 358–368Google Scholar
  66. Langebartels C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W, Sandermann H (1991) Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 95:882–889PubMedGoogle Scholar
  67. Langebartels C, Heller W, Führer G, Lippert M, Simons S, Sandermann H (1996) Memory effects in the action of ozone on conifers (in preparation)Google Scholar
  68. Lefohn AS (ed) (1992) Surface level ozone exposure and their effects on vegetation. Lewis Publ, ChelseaGoogle Scholar
  69. Leonardi S, Langebartels C (1990) Fall exposure of beech saplings (Fagus sylvatica L.) to ozone and stimulated acidic mist: effects on gas exchange and leachability. Water Air Soil Pollut 54:143–153Google Scholar
  70. Leonardi S, Langebartels C, Sandermann H (1990) Fall exposure of beech trees (Fagus sylvatica L.) to ozone and stimulated acidic mist Immediate and post-treatment effects on whole plant physiology. In: Payer HD, Pfirrmann T, Mathy P (eds) Environmental research with plants in closed chambers. Air pollution research reports, vol 26. CEC, Brussels, pp 369–380Google Scholar
  71. Lippert M, Steiner K, Payer H-D, Simons S, Langebartels C, Payer HD, Sandermannn H (1996a) Assessing the impact of ozone on photosynthesis of European beech (Fagus sylvatica L.) in environmental chambers. Trees 10:268–275Google Scholar
  72. Lippert M, Steiner K, Pfirrmann T, Payer H-D (1996b) Interactive effects of elevated 03 and CO2 on clonal Norway spruce seedlings. Photosynthetic gas exchange during the exposure and the dynamics of the “memory” effect in the following year. Trees (in press)Google Scholar
  73. Lucas PW, Rantanen L, Mehlhorn H (1993) Needle chlorosis in Sitka spruce following a three-year exposure to low concentrations of ozone: changes in mineral content, pigmentation and ascorbic acid. New Phytol 124:265–275Google Scholar
  74. Lütz C (1988) Photosynthetische Pigmente aus Nadelbäumen unterschiedlicher Höhenstufen des Ötztales. GSF-Bericht 17/88:415–425Google Scholar
  75. Lütz C (1991) Einfluß von Höhenlage, Witterung and Jahreszeit auf das Pigmentmuster von Nadeln ausgewählter Fichten am Wank. GSF-Bericht 29/91:209–224Google Scholar
  76. Lütz C, Heinzmann U, Gülz P-G (1990) Surface structures and epicuticular wax composition of spruce needles after long-term treatment with ozone and acid mist. Environ Pollut 64:313–322PubMedGoogle Scholar
  77. Lütz C, Steiger A, Godde D (1992) Influence of air pollutant and nutrient deficiency on D-1 protein content and photosynthesis in young spruce trees. Physiol Plant 85:611617Google Scholar
  78. Manning WJ, Krupa SV (1992) Experimental methodology for studying the effects of ozone on crops and trees. In: Lefohn AS (ed) Surface level ozone exposure and their effects on vegetation. Lewis Publ, Chelsea, pp 93–156Google Scholar
  79. Manning WJ, von Tiedemann A (1995) Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (03) and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88:219–245PubMedGoogle Scholar
  80. Matyssek R, Keller T, Günthardt-Goerg MS (1990) Ozonwirkungen auf den verschiedenen Organisationsebenen in Holzpflanzen Schweiz Z Forstwes 141:631–651Google Scholar
  81. Matyssek R, Reich PB, Oren R, Winner WE (1995) Response mechanisms of conifers to air pollutants. In: Smith WK, Hinckley TM (eds) Ecophysiology of coniferous forests. Academic Press, San Diego, pp 255–308Google Scholar
  82. McLaughlin SB, McConathy RK, Duvick D, Mann LK (1982) Effects of chronic air pollution stress on photosynthesis, carbon allocation, growth of white pine trees. For Sci 28:60–70Google Scholar
  83. Mehlhorn H, Wellburn AR (1987) Stress ethylene formation determines plant sensitivity to ozone. Nature 327:417–418Google Scholar
  84. Mikkelsen TN, Dodell B, Lütz C (1995) Changes in pigment concentration and composition in Norway spruce induced by long-term exposure to low levels of ozone. Environ Pollut 87:197–205PubMedGoogle Scholar
  85. Miller PR (1993) Mixed conifer forests of the San Bernardino Mountains, California. In: Olson RK, Blinkley D, Böhm M (eds) The response of Western forests to air pollution. Ecological Studies, vol 97. Springer, Berlin Heidelberg New York, pp 461–496Google Scholar
  86. Müller M, Köhler B, Grill D, Guttenberger H, Lütz C (1994) The effects of various soils, different provenances and air pollution on root tip chromosomes in Norway spruce. Trees 9:73–79Google Scholar
  87. Müller M, Köhler B, Tausz M, Grill D, Lütz C (1996) The assessment of ozone stress by recording chromosomal aberrations in root tips of spruce trees (Picea abies [L.] Karst.). J Plant Physiol 148:160–165Google Scholar
  88. Payer HD, Blank LW, Gnatz G, Schmolke W, Schramel P, Bosch C (1986) Simultaneous exposure of forest trees to pollutants and climatic stress. Water Air Soil Pollut 31:485–491Google Scholar
  89. Payer HD, Pfirrmann T, Mathy P (eds) (1990) Environmental research with plants in closed chambers. Air pollution research reports of the EC, vol 26. CEC, BrusselsGoogle Scholar
  90. Payer HD, Blodow P, Köfferlein M, Lippert M, Schmolke W, Seckmeyer G, Seidlitz H, Strube D, Thiel S (1994) Controlled environment chambers for experimental studies on plant responses to CO2 and interactions with pollutants. In: Schulze ED, Mooney HA (eds) Design and execution of experiments on CO2 enrichment. Commission of the European Communities, Ecosystems Research Report, vol 6. CEC, Brussel, pp 127–145Google Scholar
  91. Pearson M, Mansfield TA (1993) Interacting effects of ozone and water stress on the stomatal resistance of beech (Fagus sylvatica L.). New Phytol 123:351–358Google Scholar
  92. Pearson M, Mansfield TA (1994) Effect of exposure to ozone and water stress on the following season’s growth of beech (Fagus sylvativa L.) New Phytol 126:511–515Google Scholar
  93. Pfündel E, Bilger W (1994) Regulation and possible function of the violaxanthin cycle. Photosynth Res 42:89–109Google Scholar
  94. Pye JM (1988) Impact of ozone on the growth and yield of trees: a review. J Environ Qual 17:347–360Google Scholar
  95. Rehfuess KE, Bosch C (1986) Experimentelle Untersuchungen zur Erkrankung der Fichte (Picea abies [L.] Karst.) auf sauren Böden der Hochlagen: Arbeitshypothese und Versuchsplan. Forstwiss Centralbl (Hamb) 105:201–206Google Scholar
  96. Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91PubMedGoogle Scholar
  97. Roberts TM, Brown KA, Blank LW (1988) Methodological aspects of the fumigation of forest trees with gaseous pollutants using closed chambers. In: Mathy P (ed) Air pollution and ecosystems. CEC, Brussels, pp 338–369Google Scholar
  98. Rosemann D, Heller W, Sandermann H (1991) Biochemical plant responses to ozone. II. Induction of stilbene biosynthesis in Scots pine (Pinus sylvestris L.) seedlings. Plant Physiol 97:1280–1286PubMedGoogle Scholar
  99. Runeckles VC, Chevone BI (1992) Crop responses to ozone. In: Lefohn AS (ed) Surfacelevel ozone exposures and their effects on vegetation. Lewis Publ, Chelsea, pp 185–266Google Scholar
  100. Runeckles VC, Krupa SV (1994) The impact of UV-B radiation and ozone on terrestrialvegetation. Environ Pollut 83:191–213PubMedGoogle Scholar
  101. Ryals J, Lawton KA, Delaney TP, Friedrich L, Kessmann H, Neuenschwander U, Uknes S, Vernooij B, Weymann K (1995) Signal transduction in systemic acquired resistance. Proc Natl Acad Sci USA 92:4202–4205PubMedGoogle Scholar
  102. Sandermann H (1996) Ozone and plant health. Annu Rev Phytopathol 34:347–366PubMedGoogle Scholar
  103. Sandermann H, Heller W, Langebartels C (1989a) Early biochemical effects of air pollutants: detection and possible significance for forest trees. In: Ulrich B (ed) Proc of theint congr on forest decline research: state of knowledge and perspectives. Friedrichshafen, Kernforschungzentrum Karlsruhe, pp 517–525Google Scholar
  104. Sandermann H, Schmitt R, Heller W, Rosemann D, Langebartels C (1989b) Ozone-induced early biochemical reactions in conifers. In: Longhurst JWS (ed) Acid deposition. Sources, effects and controls. British Library, London, pp 243–254Google Scholar
  105. Sandermann H, Langebartels C, Heller W (1990) Ozonstreß bei Pflanzen. Frühe und “Memory”-Effekte von Ozon bei Nadelbäumen. Z Umweltchem Ökotox 2:14–15Google Scholar
  106. Sandermann H, Ernst D, Heller W, Langebartels C (1994) Biochemical markers for stress detection and ecophysiology. In: Schulze ED, Mooney HA (eds) Design and execution of experiments on CO2 enrichment. Commission of the European Communities, Ecosystems research report, vol 6. CEC, Brussels. pp 45–51Google Scholar
  107. Schiffgens-Gruber A, Lütz C (1992) Ultrastructure of mesophyll cell chloroplasts of spruce needles exposed to 03, SO2 and NO2 alone and in combination. Environ Exp Bot 32:243–254Google Scholar
  108. Schlagnhaufer DC, Glick RE, Arteca RN, Pell EJ (1995) Molecular cloning of an ozone-induced 1-aminocyclopropane-l-carboxylate synthase cDNA and its relationship with a loss of rbcS in potato (Solanum tuberosum L.) plants. Plant Mol Biol 28:93–103PubMedGoogle Scholar
  109. Schmitt R, Sandermann H (1990) Biochemical response of Norway spruce (Picea abies [L.] Karst.) towards 14-month exposure to ozone and acid mist: part II - effects on protein biosynthesis. Environ Pollut 64:367–373PubMedGoogle Scholar
  110. Schmitz H, Löffel U, Weidner M (1993) The rate of protein synthesis in needles of Norway spruce (Picea abies): light stimulation, regulation through photophosphorylation, stress enhancement. Physiol Plant 87:237–247Google Scholar
  111. Schneiderbauer A, Back E, Sandermann H, Ernst D (1995) Ozone induction of extensin mRNA in Scots pine, Norway spruce and European beech. New Phytol 130:225–230Google Scholar
  112. Schnitzler J-P, Jungblut TP, Heller W, Köfferlein M, Hutzler P, Heinzmann U, Schmelzer E, Ernst D, Langebartels C, Sandermann H (1996) Tissue localization of UV-B-screening pigments and of chalcone synthase mRNA in needles of Scots pine seedlings. New Phytol 132:247–258Google Scholar
  113. Schraudner M (1992) Frühe Reaktionen von Tabak und Buche auf Ozon: Induktion des Tyramin-und Polyaminstoffwechsels. PhD Thesis, Technische Universität MünchenGoogle Scholar
  114. Schraudner M, Ernst D, Langebartels C, Sandermann H (1992) Biochemical plant responses to ozone. III. Activation of the defense-related proteins ß-1,3-glucanase and chitinase in tobacco leaves. Plant Physiol 99:1321–1328PubMedGoogle Scholar
  115. Schraudner M, Graf U, Langebartels C, Sandermann H (1994) Ambient ozone can induce plant defence reactions in tobacco. Proc R Soc Edinb 102B:55–61Google Scholar
  116. Schraudner M, Langebartels C, Sandermann H (1996) Plant defence systems and ozone. Biochem Soc Transact 24:456–462Google Scholar
  117. Schulze E-D, Lange OL, Oren R (eds) (1989) Forest decline and air pollution. Ecological Studies, vol 77. Springer, Berlin Heidelberg New YorkGoogle Scholar
  118. Seckmeyer G, Payer HD (1990) Requirements for artificial irradiation of plants in closed chambers. In: Payer HD, Pfirrmann T, Mathy P (eds) Environmental research with plants in closed chambers. Air pollution research reports of the EC, vol 26. CEC, Brussels, pp 299–308Google Scholar
  119. Seckmeyer G, Payer H-D (1993) A new sunlight simulator for ecological research on plants. J Photochem Photobiol B Biol 21:175–181Google Scholar
  120. Senser M (1990) Influence of soil substrate and ozone plus acid mist on the frost resistance of young Norway spruce. Environ Pollut 64:265–278PubMedGoogle Scholar
  121. Senser M, Schötz F, Beck E (1975) Seasonal changes in structure and function of spruce chloroplasts. Planta 126:1–10Google Scholar
  122. Senser M, Kloos M, Lütz C (1990) Influence of soil substrate and ozone plus acid mist on the pigment content and composition of needles from young Norway spruce trees. Environ Pollut 64:295–312PubMedGoogle Scholar
  123. Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23 Siefermann-Harms D (1987) The light harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69:561–568Google Scholar
  124. Siefermann-Harms D (1990) The Hohenheim long-term experiment: chlorophyll, carotenoids and the activity of the xanthophyll cycle. Environ Pollut 68:293–303PubMedGoogle Scholar
  125. Siefermann-Harms D (1996) Destabilization of the antenna complex LHC II during needle yellowing of a Mg-deficient spruce tree exposed to ozone pollution - comparison with other types of yellowing. J Plant Physiol 148:195–202Google Scholar
  126. Simmons CR (1994) The physiology and molecular biology of plant 1,3-ß-D-glucanases and 1,3;1,4-ß-D-glucanases. Crit Rev Plant Sci 13:325–387Google Scholar
  127. Simons S (1993) Biochemische Effekte und Symptomentwicklung bei Buchen (Fagus sylvatica L.) und Nadelgehölzen unter realen und proportional erhöhten Ozonkonzentrationen. PhD Thesis, Ludwig-Maximilians University MünchenGoogle Scholar
  128. Smith WH (1990) Air pollution and forests. Interactions between air contaminants and forest ecosystems. Springer, Berlin Heidelberg New YorkGoogle Scholar
  129. Steiger A (1990) Biochemische Grundlagen zur Nadelvergilbung bei Fichten (Picea abies (L.) Karst.) unter dem Einfluß von Luftschadstoffen. PhD Thesis, Ludwig-Maximilians Univeristy MünchenGoogle Scholar
  130. Strack D, Heilemann I, Mömken M, Klinkott ES, Krause GHM, Nowack R, Stannartz B, Wray V (1987) Workshop “Luftverunreinigungen und Waldschaden”. Bericht No 1, Essen, pp 329–353Google Scholar
  131. Taylor G, Dobson MC (1989) Photosynthetic characteristics, stomatal responses and water relations of Fagus sylvatica: impact of air quality at a site in southern Britain. New Phytol 113:265–273Google Scholar
  132. Tenter M, Wild A (1991) Investigations on the polyamine content of spruce needles relative to the occurrence of novel forest decline. J Plant Physiol 137:647–654Google Scholar
  133. Thalmair M, Bauw G, Thiel S, Doehring T, Langebartels C, Sandermann H (1996) Ozone and ultraviolet B effects on the defense-related proteins ß-1,3-glucanase and chitinase. J Plant Physiol 148:222–228Google Scholar
  134. Thiel S, Doehring T, Koefferlein M, Kosak A, Martin P, Seidlitz HK (1996) A phytotron for plant stress research: how far can artificial lighting compare to natural sun light? J Plant Physiol 148:456–463Google Scholar
  135. Tingey DT, Standley C, Field RW (1976a) Stress ethylene evolution: a measure of ozone effects on plants. Atmos Environ 10:969–974Google Scholar
  136. Tingey DT, Wilhour RG, Standley C (1976b) The effect of chronic ozone exposures on the metabolite content of Ponderosa pine seedlings. For Sci 22:234–241Google Scholar
  137. UN-ECE (1994) Critical levels for ozone. In: Fuhrer J, Achermann B (eds) UN-ECE workshop report. Schriftenreihe FAC 16, BernGoogle Scholar
  138. Van Camp, W, Willekens H, Bowler C, Van Montagu M, Inzé D, Reupold-Popp P, Sandermann H, Langebartels C (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Bio/Technology 12:165–168Google Scholar
  139. Van den Driessche R, Langebartels C (1994) Foliar symptoms, ethylene biosynthesis and water use of young Norway spruce (Picea abies [L.] Karst.) exposed to drought and ozone. Water Air Soil Pollut 78:153–168Google Scholar
  140. Van Loon LC, Pierpoint WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Rep 12:245–264Google Scholar
  141. Wegener A (1995) Ozon-induzierte Änderungen im Transkriptmuster von Kiefernkeimlingen (Pinus sylvestris L.): Charakterisierung beteiligter Gene. PhD Thesis, Ludwig-Maximilians University, MünchenGoogle Scholar
  142. Wild A, Schmitt V (1995) Diagnosis of damage to Norway spruce (Picea abies) through biochemical criteria. Physiol Plant 93:375–382Google Scholar
  143. Willekens H, van Camp W, van Montagu M, Inzé D, Langebartels C, Sandermann H (1994) Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiol 106:1007–1014PubMedGoogle Scholar
  144. Wolfenden J, Robinson DC, Cape JN, Paterson IS, Francis BJ, Mehlhorn H, Weliburn AR (1988) Use of carotenoid ratios, ethylene emissions and buffer capacities of the early diagnostics of forest decline. New Phytol 109:85–95Google Scholar
  145. Yalpani N, Enyedi AJ, Leon J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicyclic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372–376Google Scholar
  146. Yin Z-H, Langebartels C, Sandermann H (1994) Specific induction of ethylene biosynthesis in tobacco plants by the air pollutant, ozone. Proc R Soc Edinb 102B:127–130Google Scholar
  147. Yang C, Wilksch W, Wild A (1994) 1-Aminocyclopropane-1-carboxylic acid, its malonyl conjugate and 1-aminocyclopropane-l-carboxylate synthase activity in needles of damaged and undamaged Norway spruce trees. J Plant Physiol 143:389–395Google Scholar
  148. Zarembinski TI, Theologis A (1994) Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol 26:1579–1597Google Scholar
  149. Zielke H, Sonnenbichler J (1990) Natural occurrence of 3,3’,4,4’-tetramethoxy-1,1’-biphenyl in leaves of stressed European beech. Naturwissenschaften 77:384–385Google Scholar
  150. Zinser C (1996) Induktion der Gene der Zimtalkohol-Dehydrogenase und der Stilbensynthase durch Ozon und UV-B in der Kiefer (Pinus sylvestris L.). PhD Thesis, LudwigMaximilians-Universität MünchenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • C. Langebartels
  • D. Ernst
  • W. Heller
  • C. Lütz
  • H.-D. Payer
  • H. SandermannJr.

There are no affiliations available

Personalised recommendations