Advertisement

Codes1

  • Helmut Jürgensen
  • Stavros Konstantinidis
Chapter

Abstract

Codes are formal languages with special combinatorial and structural properties which are exploited in information processing or information transmission. In this application, codes serve several different purposes. In the following discussion we assume the well-known model of information transmission consisting of a source S sending information to a recipient R via a channel C as illustrated in Fig. 1.1. Before actual transmission, the information is encoded using an encoder γ and, before reception, it is decoded using a decoder δ, During transmission, the encoded information may undergo changes due to environmental conditions or faults in the channel; the potential presence of such changes is modelled by a source N of noise. Moreover, the information may be overheard or even altered during transmission by a hostile participant F.

Keywords

Regular Language Code Word Dependence System Tree Transducer Prefix Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Ahlswede, I. Wegener: Suchprobleme. B. G. Teubner, Stuttgart, 1979.zbMATHGoogle Scholar
  2. [2]
    L. R. Bahl, F. Jelinek: Decoding for channels with insertions, deletions, and substitutions with applications to speech recognition. IEEE Trans. Inform. Theory IT-21 (1975), 404–411.zbMATHGoogle Scholar
  3. [3]
    L. R. Bahl, F. Jelinek, R. L. Mercer: A maximum likelihood approach to continuous speech recognition. IEEE Trans. Pattern Analysis and Machine Intell. 5 (1983), 179–190.Google Scholar
  4. [4]
    J. Berstel, D. Perrin: Theory of Codes. Academic Press, Orlando, 1985.zbMATHGoogle Scholar
  5. [5]
    P. A. H. Bours: Construction of fixed-length insertion/deletion correcting runlength-limited codes. IEEE Trans. Inform. Theory IT-40 (1994), 1841–1856.zbMATHGoogle Scholar
  6. [6]
    V. Bruyère: Maximal prefix products. Semigroup Forum 36 (1987), 147–157.MathSciNetzbMATHGoogle Scholar
  7. [7]
    V. Bruyère: Maximal codes with bounded deciphering delay. Theoret. Comput. Sci. 84 (1991), 53–76.zbMATHGoogle Scholar
  8. [8]
    V. Bruyère, M. Latteux: Variable-length maximal codes. In F. Meyer auf der Heide, B. Monien (editors): Automata, Languages and Programming,23rd International Colloquium, ICALP ‘86, Paderborn, Germany, July 1996,Proceedings. Lecture Notes in Computer Science 1099 24–47, Springer-Verlag, Berlin, 1996.Google Scholar
  9. [9]
    V. Bruyère, L. Wang, L. Zhang: On completion of codes with finite deciphering delay. European J. Combin. 11 (1990), 513–521.MathSciNetzbMATHGoogle Scholar
  10. [10]
    L. Calabi, W. E. Hartnett: A family of codes for the correction of substitution and synchronization errors. IEEE Trans. Inform. Theory IT-15 (1969), 102–106.MathSciNetzbMATHGoogle Scholar
  11. [11]
    A. R. Calderbank, C. N. Georghiades: Synchronizable codes for the optical OPPM channel. IEEE Trans. Inform. Theory IT-40 (1994), 1097–1107.zbMATHGoogle Scholar
  12. [12]
    R. M. Capocelli: A decision procedure for finite decipherability and synchronizability of multivalued encodings. IEEE Trans. Inform. Theory IT-28 (1982), 307–318.MathSciNetzbMATHGoogle Scholar
  13. [13]
    R. M. Capocelli, L. Gargano, U. Vaccaro: Decoders with initial state invariance for multivalued encodings. Theoret. Comput. Sci. 86 (1991), 365–375.MathSciNetzbMATHGoogle Scholar
  14. [14]
    R. M. Capocelli, C. M. Hoffmann: Algorithms for factorizing and testing subsemigroups. In A. Apostolico, Z. Galil (editors): Combinatorial Algorithms on Words. NATO ASI Series F12 59–81, Springer-Verlag, Berlin, 1985.Google Scholar
  15. [15]
    R. M. Capocelli, U. Vaccaro: Structure of decoders for multivalued encodings. Discrete Appl. Math. 23 (1989), 55–71.MathSciNetzbMATHGoogle Scholar
  16. [16]
    P. M. Cohn: Universal Algebra. D. Reidel Publishing Co., Dordrecht, revised ed., 1981.zbMATHGoogle Scholar
  17. [17]
    W. Damm: The IO- and OI-hierarchies. Theoret. Comput. Sci. 20 (1982), 95–206.MathSciNetzbMATHGoogle Scholar
  18. [18]
    P. H. Day, H. J. Shyr: Languages defined by some partial orders. Soochow J. Math. 9 (1983), 53–62.MathSciNetzbMATHGoogle Scholar
  19. [19]
    J. Devolder: Precircular codes and periodic biinfinite words. Inform. and Comput. 107 (1993), 185–201.MathSciNetzbMATHGoogle Scholar
  20. [20]
    J. Devolder, M. Latteux, I. Litovsky, L. Staiger: Codes and infinite words. Acta Cybernet. 11 (1994), 241–256.MathSciNetzbMATHGoogle Scholar
  21. [21]
    J. Devolder, E. Timmerman: Finitary codes for bi-infinite words. RAIRO Inform. Théor. Appl. 26 (1992), 363–386.MathSciNetzbMATHGoogle Scholar
  22. [22]
    J. Duske, H. Jürgensen: Codierungstheorie. BI Wissenschaftsverlag, Mannheim, 1977.zbMATHGoogle Scholar
  23. [23]
    A. Ehrenfeucht, G. Rozenberg: Each regular code is included in a maximal regular code. RAIRO Inform. Théor. Appl. 20 (1985), 89–96.MathSciNetzbMATHGoogle Scholar
  24. [24]
    Eilenberg: Automata Languages and Machines, Volume A. Academic Press, New York, 1974.zbMATHGoogle Scholar
  25. [25]
    J. Engelfriet: Iterated stack automata and complexity classes. Inform. and Comput. 95 (1991), 21–75.MathSciNetGoogle Scholar
  26. [26]
    J. Engelfriet, H. Vogler: Pushdown machines for the macro tree transducer. Theoret. Comput. Sci. 42 (1986), 251–368.MathSciNetzbMATHGoogle Scholar
  27. [27]
    J. Engelfriet, H. Vogler: Look-ahead on pushdowns. Inform. and Comput. 73 (1987), 245–279.MathSciNetzbMATHGoogle Scholar
  28. [28]
    J. Engelfriet, H. Vogler: High level tree transducers and iterated pushdown tree transducers. Acta Inform. 26 (1988), 131–192.MathSciNetzbMATHGoogle Scholar
  29. [29]
    C. de Felice: Construction of a family of finite maximal codes. Theoret. Comput. Sci. 63 (1989), 157–184.MathSciNetzbMATHGoogle Scholar
  30. [30]
    C. de Felice, A. Restivo: Some results on finite maximal codes. RAIRO Inform. Théor. Appl. 19 (1985), 383–403.MathSciNetzbMATHGoogle Scholar
  31. [31]
    F. Gécseg, H. Jürgensen: Dependence in algebras. Fund. Inform. To appear.Google Scholar
  32. [32]
    F. Gécseg, H. Jürgensen: Algebras with dimension. Algebra Universalis 30 (1993), 422–446.MathSciNetzbMATHGoogle Scholar
  33. [33]
    Y. V. Glebskii: Coding by means of finite automata. Dokl. Akad. Nauk. SSSR 141 (1961), 1054–1057, in Russsian. English translation: Soviet Physics Dokl. 6 (1962), 1037–1039.Google Scholar
  34. [34]
    G. Grätzer: Universal Algebra. Van Nostrand, Princeton, NJ, 1968.Google Scholar
  35. [35]
    S. A. Greibach: A remark on code sets and context-free languages. IEEE Trans. Comput. C-24 (1975), 741–742.MathSciNetzbMATHGoogle Scholar
  36. [36]
    S. Guiau: Information Theory with Applications. McGraw-Hill, London, 1977.Google Scholar
  37. [37]
    C. G. Günther: A universal algorithm for homophonic coding. In C. G. Günther (editor): Advances in Cryptology Proceedings of Eurocrypt’88, Workshop on the Theory and Application of Cryptographic Techniques, Davos, 1988. Lecture Notes in Computer Science 330 405–414, Springer-Verlag, Berlin, 1988.Google Scholar
  38. [38]
    Y. Q. Guo, H. J. Shyr, G. Thierrin: e-convex infix codes. Order 3 (1986), 55–59.MathSciNetzbMATHGoogle Scholar
  39. [39]
    Y. Q. Guo, G. Thierrin, S. H. Zhang: Semaphore codes and ideals. J. Inform. Optim. Sci. 9(1) (1988), 73–83.MathSciNetzbMATHGoogle Scholar
  40. [40]
    W. E. Hartnett: Generalization of tests for certain properties of variable-length codes. Inform. and Control 13 (1968), 20–45.MathSciNetzbMATHGoogle Scholar
  41. [41]
    W. E. Hartnett (editor): Foundations of Coding Theory. Boston, 1974. D. Reidel Publishing Co.zbMATHGoogle Scholar
  42. [42]
    T. Head, G. Thierrin: Hypercodes in deterministic and slender OL languages. Inform. and Control 45(3) (1980), 251–262.MathSciNetzbMATHGoogle Scholar
  43. [43]
    T. Head, A. Weber: Deciding code related properties by means of finite transducers. In R. Capocelli, A. de Santis, U. Vaccaro (editors): Sequences II, Methods in Communication, Security, and Computer Science. 260–272, Springer-Verlag, Berlin, 1993.Google Scholar
  44. [44]
    C. M. Hoffmann: A note on unique decipherability. In M. P. Chytil, V. Koubek (editors): Mathematical Foundations of Computer Science 1984; Proceedings, 11th Symposium; Praha, Czechoslovakia; September 3–7, 1984. Lecture Notes in Computer Science 176 50–63, Springer-Verlag, Berlin, 1984.Google Scholar
  45. [45]
    H. D. L. Hollman: A relation between Levenshtein-type distances and insertion-and-deletion correcting capabilities of codes. IEEE Trans. Inform. Theory IT-39 (1993), 1424–1427.Google Scholar
  46. [46]
    O. H. Ibarra: Reversal-bounded multicounter machines and their decision problems. J. Assoc. Comput. Mach. 25 (1978), 116–133.MathSciNetzbMATHGoogle Scholar
  47. [47]
    M. Ito, H. Jürgensen: Shuffle relations. Manuscript, 1996. In preparation.Google Scholar
  48. [48]
    M. Ito, H. Jürgensen, H. J. Shyr, G. Thierrin: Anti-commutative languages and n-codes. Discrete Appl. Math. 24 (1989), 187–196.MathSciNetzbMATHGoogle Scholar
  49. [49]
    M. Ito, H. Jürgensen, H. J. Shyr, G. Thierrin: n-Prefix-suffix languages. Internat. J. Comput. Math. 30 (1989), 37–56.zbMATHGoogle Scholar
  50. [50]
    M. Ito, H. Jürgensen, H. J. Shyr, G. Thierrin: Outfix and infix codes and related classes of languages. J. Comput. System Sci. 43 (1991), 484–508.MathSciNetzbMATHGoogle Scholar
  51. [51]
    M. Ito, H. Jürgensen, H. J. Shyr, G. Thierrin: Languages whose n-element subsets are codes. Theoret. Comput. Sci. 96 (1992), 325–344.MathSciNetzbMATHGoogle Scholar
  52. [52]
    M. Ito, G. Thierrin: Congruences, infix and cohesive prefix codes. Theoret. Comput. Sci. 136 (1994), 471–485.MathSciNetzbMATHGoogle Scholar
  53. [53]
    H. N. Jendal, Y. J. B. Kuhn, J. L. Massey: An information-theoretic treatment of homophonic substitution. In J.-J. Quisquater, J. Vandewalle (editors): Advances in Cryptology—Proceedings of Eurocrypt’89, Workshop on the Theory and Application of Cryptographic Techniques, Houthalen, 1989. Lecture Notes in Computer Science 434 382–394, Springer-Verlag, Berlin, 1989.Google Scholar
  54. [54]
    H. Jürgensen: Syntactic monoids of codes. Report 327, Department of Cornputer Science, The University of Western Ontario, 1992.Google Scholar
  55. [55]
    H. Jürgensen, M. Katsura, S. Konstantinidis: Maximal solid codes. Manuscript, 1996. In Preparation.zbMATHGoogle Scholar
  56. [56]
    H. Jürgensen, S. Konstantinidis: The hierarchy of codes. In Z. Esik (editor): Fundamentals of Computation Theory, 9th International Conference, FCT’93. Lecture Notes in Computer Science 710 50–68, Springer-Verlag, Berlin, 1993.Google Scholar
  57. [57]
    H. Jürgensen, S. Konstantinidis: Variable-length codes for error correction. In Z. Fülöp, F. Gécseg (editors): Automata, Languages and Programming, 22nd International Colloquium, ICALP95,Proceedings. Lecture Notes in Computer Science 944 581–592, Springer-Verlag, Berlin, 1995.Google Scholar
  58. [58]
    H. Jürgensen, S. Konstantinidis: Burst error correction for channels with substitutions, insertions and deletions. Manuscript, 1996. In preparation.zbMATHGoogle Scholar
  59. [59]
    H. Jürgensen, S. Konstantinidis: Error correction for channels with substitutions, insertions, and deletions. In J.-Y. Chouinard, P. Fortier, T. A. Gulliver (editors): Information Theory and Applications 2, Fourth Canadian Workshop on Information Theory. Lecture Notes in Computer Science 1133 149–163, Springer-Verlag, Berlin, 1996.zbMATHGoogle Scholar
  60. [60]
    H. Jürgensen, L. Robbins: Towards foundations of cryptography: Investigation of perfect secrecy. J. UCS 2 (1996), 347–379. Special issue: C. Calude (ed.), The Finite, the Unbounded and the Infinite, Proceedings of the Summer School “Chaffin Complexity and Applications, Mangalia, Romania, 27 June — 6 July, 1995.Google Scholar
  61. [61]
    H. Jürgensen, K. Salomaa, S. Yu: Decidability of the intercode property. J. Inform. Process. Cybernet., EIK 29 (1993), 375–380.zbMATHGoogle Scholar
  62. [62]
    H. Jürgensen, K. Salomaa, S. Yu: Transducers and the decidability of independence in free monoids. Theoret. Comput. Sci. 134 (1994), 107–117.MathSciNetzbMATHGoogle Scholar
  63. [63]
    H. Jürgensen, G. Thierrin: Infix codes. In M. Arató, I. Kátai, L. Varga (editors): Topics in the Theoretical Bases and Applications of Computer Science, Proceedings of the 4th Hungarian Computer Science Conference, Györ, 1985. 25–29, Akadémiai Kiadó, Budapest, 1986.Google Scholar
  64. [64]
    H. Jürgensen, S. S. Yu: Solid codes. J. Inform. Process. Cybernet.,EIK 26 (1990) 563–574.zbMATHGoogle Scholar
  65. [65]
    H. Jürgensen, S. S. Yu: Relations on free monoids, their independent sets, and codes. Internat. J. Comput. Math. 40 (1991), 17–46.zbMATHGoogle Scholar
  66. [66]
    H. Jürgensen, S. S. Yu: Dependence systems and hierarchies of families of languages. Manuscript, 1996. In preparation.Google Scholar
  67. [67]
    D. Kahn: The Codebreakers. Macmillan Publishing Co., New York, 1967.Google Scholar
  68. [68]
    J. Karhumäki: On three-element codes. In J. Paredaens (editor): Automata, Languages and Programming, 11th International Colloquium, ICALP 1984, Proceedings. Lecture Notes in Computer Science 172 292–302, Springer-Verlag, Berlin, 1984.Google Scholar
  69. [69]
    J. Karhumäki: On three-element codes. Theoret. Comput. Sci. 40 (1985), 3–11.MathSciNetzbMATHGoogle Scholar
  70. [70]
    S. Konstantinidis: Error Correction and Decodability. Ph. D. thesis The University of Western Ontario London, Canada 1996.Google Scholar
  71. [71]
    G. Lallement: Semigroups and Combinatorial Applications. John Wiley & Sons, Inc., New York, 1979.Google Scholar
  72. [72]
    N. H. Lâm, D. L. Van: On a class of infinitary codes. RAIRO Inform. Théor. Appl. 24 (1990), 441–458.MathSciNetzbMATHGoogle Scholar
  73. [73]
    J. L. Lassez: Circular codes and synchronization. Internat. J. Comput. Inform. Sci. 5 (1976), 201–208.MathSciNetzbMATHGoogle Scholar
  74. [74]
    V. I. Levenshtein: Certain properties of code systems. Dokl. Akad. Nauk. SSSR 140 (1961), 1274–1277, in Russian. English translation: Soviet Physics Dokl. 6 (1962), 858–860.Google Scholar
  75. [75]
    V. I. Levenshtein: Self-adaptive automata for decoding messages. Dokl. Akad. Nauk. SSSR 141 (1961), 1320–1323, in Russian. English translation: Soviet Physics Dokl. 6 (1962), 1042–1045.Google Scholar
  76. [76]
    V. I. Levenshtein: The inversion of finite automata. Dokl. Akad. Nauk. SSSR 147 (1962), 1300–1303, in Russian. English translation: Soviet Physics Dokl. 7 (1963), 1081–1084.Google Scholar
  77. [77]
    V. I. Levenshtein: Decoding automata, invariant with respect to the initial state. Problemy Kibernet. 12 (1964), 125–136, in Russian.zbMATHGoogle Scholar
  78. [78]
    V. I. Levenshtein: Some properties of coding and self-adjusting automata for decoding messages. Problemy Kibernet. 11 (1964), 63–121, in Russian. German translation: Uber einige Eigenschaften von Codierungen and von selbstkorrigierenden Automaten zur Decodierung von Nachrichten, Probleme der Kybernetik 7 (1966), 96–163. An English translation is available from the Clearinghouse for Federal Scientific and Technical Information, U. S. Department of Commerce, under the title Problems of Cybernetics, Part II, document AD 667 849; it was prepared as document FTD-MT-24–126–67 by the Foreign Technology Division, U. S. Air Force.Google Scholar
  79. [79]
    V. I. Levenshtein: Binary codes capable of correcting deletions, insertions, and reversals. Dokl. Akad. Nauk. SSSR 163 (1965), 845–848, in Russian. English translation: Soviet Physics Dokl. 10 (1966), 707–710.Google Scholar
  80. [80]
    V. I. Levenshtein: Binary codes capable of correcting spurious insertions and deletions of ones. Problemy Peredachi Informatsii 1(1) (1965), 12–25, in Russian. English translation: Problems Inform. Transmission 1(1) (1966), 8–17.Google Scholar
  81. [81]
    V. I. Levenshtein: Asymptotically optimum binary code with correction for losses of one or two adjacent bits. Problemy Kibernet. 19 (1967), 293–298, in Russian. English translation: Systems Theory Research 19 (1970), 298–304.Google Scholar
  82. [82]
    V. I. Levenshtein: On the redundancy and delay of decodable coding of natural numbers. Problemy Kibernet. 20 (1968), 173–179, in Russian. English translation: Systems Theory Research 20 (1971), 149–155.Google Scholar
  83. [83]
    V. I. Levenshtein: Bounds for codes ensuring error correction and synchronization. Problemy Peredachi Informatsii 5(2) (1969), 3–13, in Russian. English translation: Problems Inform. Transmission 5(2) (1969), 1–10.Google Scholar
  84. [84]
    V. I. Levenshtein: Maximum number of words in codes without overlaps. Problemy Peredachi Informatsii 6(4) (1970), 88–90, in Russian. English translation: Problems Inform. Transmission 6(4) (1973), 355–357.Google Scholar
  85. [85]
    V. I. Levenshtein: One method of constructing quasilinear codes providing synchronization in the presence of errors. Problemy Peredachi Informatsii 7(3) (1971), 30–40, in Russian. English translation: Problems Inform. Transmission 7(3) (1973), 215–222.Google Scholar
  86. [86]
    V. I. Levenshtein: On perfect codes in deletion and insertion metric. Diskret. Mat. 3 (1991), 3–20, in Russian. English translation: Discrete Math. Appl. 2 (1992), 241–258.Google Scholar
  87. [87]
    J. E. Levy: Self-synchronizing codes derived from binary cyclic codes. IEEE Trans. Inform. Theory IT-12 (1966), 286–290.zbMATHGoogle Scholar
  88. [88]
    B. E. Litow: Parallel complexity of the regular code problem. Inform. and Comput. 86 (1990), 107–114.MathSciNetzbMATHGoogle Scholar
  89. [89]
    D. Y. Long: k-Outfix codes. Chinese Ann. Math. Ser. A 10 (1989), 94–99, in Chinese.zbMATHGoogle Scholar
  90. [90]
    D. Y. Long: k-Prefix codes and k-infix codes. Acta Math. Sinica 33 (1990), 414–421, in Chinese.MathSciNetzbMATHGoogle Scholar
  91. [91]
    D. Y. Long: n-Infix-outfix codes. In Abstracts,Second International Colloquium on Words, Languages, and Combinatorics, Kyoto, 25–28 August, 1992. 50–51, Kyoto, 1992.Google Scholar
  92. [92]
    D. Y. Long: On the structure of some group codes. Semigroup Forum 45 (1992), 38–44.zbMATHGoogle Scholar
  93. [93]
    D. Y. Long: k-Bifix codes. Riv. Mat. Pura Appl. 15 (1994), 33–55.zbMATHGoogle Scholar
  94. [94]
    F. J. MacWilliams, N. J. A. Sloane: The Theory of Error-Correcting Codes. North-Holland, Amsterdam, 1977, 2 vols.zbMATHGoogle Scholar
  95. [95]
    A. A. Markov: Some properties of infinite prefix codes. Problemy Peredachi Informatsii 6(1) (1970), 97–98, in Russian. English translation: Problems Inform. Transmission 6(1) (1973), 85–87.Google Scholar
  96. [96]
    P. G. Neumann: Codes auf der Grundlage von Schaltfunktionen und ihre Anwendung in der Praxis der Verschlüsselung. Nachrichtentechn. Z. 14 (1961), 254–261,307–312.Google Scholar
  97. [97]
    P. G. Neumann: Efficient error-limiting variable-length codes. IEEE Trans. Inform. Theory IT-8 (1962), 292–304.MathSciNetzbMATHGoogle Scholar
  98. [98]
    P. G. Neumann: Error-limiting coding using information-lossless sequential machines. IEEE Trans. Inform. Theory IT-10 (1964) 108–115.Google Scholar
  99. [99]
    W. W. Peterson, E. J. Weldon, Jr.: Error-Correcting Codes. MIT Press, Cambridge, MA, second ed., 1972.zbMATHGoogle Scholar
  100. [100]
    M. Petrich: Lectures in Semigroups. Akademie-Verlag, Berlin, 1977.zbMATHGoogle Scholar
  101. [101]
    M. Petrich, G. Thierrin: The syntactic monoid of an infix code. Proc. Amer. Math. Soc. 109 (1990), 865–873.MathSciNetzbMATHGoogle Scholar
  102. [102]
    P. Piret: Comma free error correcting codes of variable length, generated by finite-state encoders. IEEE Trans. Inform. Theory IT-28 (1982), 764–775.MathSciNetzbMATHGoogle Scholar
  103. [103]
    T. Pratt, W. C. Bostian: Satellite Communications. John Wiley & Sons, New York, 1986.Google Scholar
  104. [104]
    H. Prodinger, G. Thierrin: Towards a general concept of hypercodes. J. Inform. Optim. Sci. 4 (1983), 255–268.MathSciNetzbMATHGoogle Scholar
  105. [105]
    C. M. Reis: Intercodes and the semigroups they generate. Internat. J. Corn-put. Math. 51 (1994), 7–13.zbMATHGoogle Scholar
  106. [106]
    C. M. Reis, G. Thierrin: Reflective star languages and codes. Inform. and Control 42 (1979), 1–9.MathSciNetzbMATHGoogle Scholar
  107. [107]
    A. Restivo: A combinatorial property of codes having finite synchronization delay. Theoret. Comput. Sci. 1 (1975), 95–101.MathSciNetzbMATHGoogle Scholar
  108. [108]
    A. Restivo: On codes having no finite completions. Discrete Math. 17 (1977), 309–316.MathSciNetzbMATHGoogle Scholar
  109. [109]
    A. Restivo, S. Salemi, T. Sportelli: Completing codes. RAIRO Inform. Théor. Appl. 23 (1989), 135–147.MathSciNetzbMATHGoogle Scholar
  110. [110]
    A. Riley: The Sardinas-Patterson and Levenshtein theorems. Inform. and Control 10 (1967), 120–136.MathSciNetzbMATHGoogle Scholar
  111. [111]
    O. T. Romanov: Invariant decoding automata without look-ahead. Problemy Kibernet. 17 (1966), 233–236, in Russian.zbMATHGoogle Scholar
  112. [112]
    R. M. Roth, P. H. Siegel: Lee-metric BCH codes and their application to constrained and partial-response channels. IEEE Trans. Inform. Theory IT-40 (1994), 1083–1096.MathSciNetzbMATHGoogle Scholar
  113. [113]
    J. Sakarovitch: Un cadre algébrique pour l’étude des monoïdes syntactiques. In Séminaire P. Dubreil (Algèbre), 28e année. 14. Paris, 1974/75.Google Scholar
  114. [114]
    K. Salomaa. Personal communication, 1996.Google Scholar
  115. [115]
    A. A. Sardinas, C. W. Patterson: A necessary and sufficient condition for the unique decomposition of coded messages. IRE Intern. Conven. Rec. 8 (1953), 104–108.Google Scholar
  116. [116]
    K. Sato: Decipherability of GSM encoding. Denshi Tsushin Gakkai Ronbunshi 57-D (1974), 181–188, in Japanese. English translation: Systems-ComputersControls 5 (1974), 53–61.Google Scholar
  117. [117]
    K. Sato: A decision procedure for the unique decipherability of multivalued encodings. IEEE Trans. Inform. Theory IT-25 (1979), 356–360.MathSciNetzbMATHGoogle Scholar
  118. [118]
    M. Satyanarayana: Uniformly synchronous codes. Semigroup Forum 46 (1993), 246–252.MathSciNetzbMATHGoogle Scholar
  119. [119]
    M. Satyanarayana, S. Mohanty: Limited semaphore codes. Semigroup Forum 45 (1992), 367–371.MathSciNetzbMATHGoogle Scholar
  120. [120]
    M. Satyanarayana, S. Mohanty: Uniformly synchronous limited codes. Semi-group Forum 46 (1993), 21–26.MathSciNetzbMATHGoogle Scholar
  121. [121]
    B. M. Schein: Homomorphisms and subdirect decompositions of semigroups. Pacific J. Math. 17 (1966), 529–547.MathSciNetzbMATHGoogle Scholar
  122. [122]
    F. F. Sellers, Jr.: Bit loss and gain correction code. IRE Trans. Inform. Theory IT-8 (1962), 35–38.MathSciNetzbMATHGoogle Scholar
  123. [123]
    H. J. Shyr: Free Monoids and Languages. Hon Min Book Company, Taichung, second ed., 1991.Google Scholar
  124. [124]
    H. J. Shyr, G. Thierrin: Hypercodes. Inform. and Control 24 (1974), 45–54.Google Scholar
  125. [125]
    H. J. Shyr, S. S. Yu: Intercodes and some related properties. Soochow J. Math. 16 (1990), 95–107.MathSciNetzbMATHGoogle Scholar
  126. [126]
    H. J. Shyr, S. S. Yu: Solid codes and disjunctive domains. Semigroup Forum 41 (1990), 23–37.MathSciNetzbMATHGoogle Scholar
  127. [127]
    J. C. Spehner: Quelques constructions et algorithmes relatifs aux sous-mono Ides d’un monoïde libre. Semigroup Forum 9 (1975), 334–353.Google Scholar
  128. [128]
    L. Staiger: On infinitary finite length codes. RAIRO Inform. Théor. Appl. 20 (1986), 483–494.MathSciNetzbMATHGoogle Scholar
  129. [129]
    G. Tenengol’ts: Nonbinary codes, correcting single deletion or insertion. IEEE Trans. Inform. Theory IT-30 (1984), 766–769.MathSciNetzbMATHGoogle Scholar
  130. [130]
    G. Thierrin: Hypercodes, right convex languages and their syntactic monoids. Proc. Amer. Math. Soc. 83(2) (1981), 255–258.MathSciNetzbMATHGoogle Scholar
  131. [131]
    G. Thierrin: The syntactic monoid of a hypercode. Semigroup Forum 6 (1973), 227–231.MathSciNetzbMATHGoogle Scholar
  132. [132]
    G. Thierrin, S. S. Yu: Shuffle relations and codes. J. Inform. and Optim. Sci. 12 (1991), 441–449.MathSciNetzbMATHGoogle Scholar
  133. [133]
    J. D. Ullman: Near-optimal, single-synchronization-error-correcting code. IEEE Trans. Inform. Theory IT-12 (1966), 418–424.zbMATHGoogle Scholar
  134. [134]
    J. D. Ullman: On the capabilities of codes to correct synchronization errors. IEEE Trans. Inform. Theory IT-13 (1967), 95–105.zbMATHGoogle Scholar
  135. [135]
    E. Valkema: Syntaktische Monoide und Hypercodes. Semigroup Forum 13 (1976/77), 119–126.MathSciNetzbMATHGoogle Scholar
  136. [136]
    D. L. Van: Codes avec des mots infinis. RAIRO Inform. Théor. Appl. 16 (1982), 371–386.MathSciNetzbMATHGoogle Scholar
  137. [137]
    D. L. Van: Sous-monoides et codes avec des mots infinis. Semigroup Forum 26 (1983), 75–87.MathSciNetzbMATHGoogle Scholar
  138. [138]
    D. L. Van: Ensembles code-compatibles et une généralisation du théorème de Sardinas—Patterson. Theoret. Comput. Sci. 38 (1985), 123–132.MathSciNetzbMATHGoogle Scholar
  139. [139]
    D. L. Van: Langages écrits par un code infinitaire. Théorème du défaut. Acta Cybernet. 7 (1986), 247–257.MathSciNetzbMATHGoogle Scholar
  140. [140]
    D. L. Van, D. G. Thomas, K. G. Subramanian: Bi-infinitary codes. RAIRO Inform. Théor. Appl. 24 (1990), 67–87.MathSciNetzbMATHGoogle Scholar
  141. [141]
    R. R. Varshamov, G. M. Tenengol’ts: Codes capable of correcting single asymmetric errors. Avtomat. i Telemekh. 26 (1965), 288–292, in Russian.Google Scholar
  142. [142]
    M. Vincent: Construction de codes indecomposables. RAIRO Inform. Théor. Appl. 19 (1985), 165–178.MathSciNetzbMATHGoogle Scholar
  143. [143]
    D. J. A. Welsh: Matroid Theory. Academic Press, London, 1976.zbMATHGoogle Scholar
  144. [144]
    S. S. Yu: A characterization of intercodes. Internat. J. Comput. Math. 36 (1990), 39–45.zbMATHGoogle Scholar
  145. [145]
    S. Yu. Personal communication, 1995.Google Scholar
  146. [146]
    S. Zhang: An equivalence relation on suffix codes defined by generalized regular languages. Internat. J. Comput. Math. 35 (1990), 15–24.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Helmut Jürgensen
  • Stavros Konstantinidis

There are no affiliations available

Personalised recommendations