Context-Free Languages and Pushdown Automata

  • Jean-Michel Autebert
  • Jean Berstel
  • Luc Boasson


This chapter is devoted to context-free languages. Context-free languages and grammars were designed initially to formalize grammatical properties of natural languages [9]. They subsequently appeared to be well adapted to the formal description of the syntax of programming languages. This led to a considerable development of the theory.


Empty Word Valid Computation Pushdown Automaton Linear Language Deterministic Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation and Compiling., volume 1. Prentice-Hall, 1973.Google Scholar
  2. 2.
    J.-M. Autebert. Théorie des langages et des automates. Masson, 1994.Google Scholar
  3. 3.
    J.-M. Autebert, L. Boasson, and I. H. Sudborough. Some observations on hardest context-free languages. Technical Report 81–25, Rapport LITP, April 1981.Google Scholar
  4. 4.
    J. Berstel. Transductions and Context-Free Languages. Teubner Verlag, 1979.CrossRefGoogle Scholar
  5. 5.
    M. Blattner and S. Ginsburg. Canonical forms of context-free grammars and position restricted grammar forms. In Karpinski, editor, Fundamentals of Computing Theory, volume 56 of Lect. Notes Comp. Sei., 1977.zbMATHGoogle Scholar
  6. 6.
    L. Boasson. Two iteration theorems for some families of languages. J. Comput. System Sei., 7(6):583–596, December 1973.MathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Boasson, J. P. Crestin, and M. Nivat. Familles de langages translatables et fermées par crochet. Acta Inform., 2:383–393, 1973.CrossRefGoogle Scholar
  8. 8.
    F. J. Brandenburg. On the intersection of stacks and queues. Theoret. Comput. Sci., 23:69–82, 1983.MathSciNetCrossRefGoogle Scholar
  9. 9.
    N. Chomsky. On certain formal properties of grammars. Inform. and Control, 2:137–167, 1959.MathSciNetCrossRefGoogle Scholar
  10. 10.
    N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages. In P. Bradford and D. Hirschberg, editors, Computer programming and formal systems, pages 118–161. North-Holland (Amsterdam), 1963.CrossRefGoogle Scholar
  11. 11.
    S. V. Cole. Deterministic pushdown store machines and realtime computation. J. Assoc. Comput. Mach., 18:306–328, 1971.MathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Courcelle. On jump deterministic pushdown automata. Math. Systems Theory, 11:87–109, 1977.MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Cremers and S. Ginsburg. Context-free grammar forms. J. Comput. System Sci., 11:86–117, 1975.MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. J. Evey. The theory and application of pushdown store machines. In Mathematical Linguistics and Automatic Translation, NSF-IO, pages 217–255. Harvard University, May 1963.Google Scholar
  15. 15.
    M. Fliess. Transductions de séries formelles. Discrete Math., 10:57–74, 1974.MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. W. Floyd. Syntactic analysis and operator precedence. J. Assoc. Comput. Mach., 10:313–333, 1963.CrossRefGoogle Scholar
  17. 17.
    S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill, 1966.zbMATHGoogle Scholar
  18. 18.
    S. Ginsburg, J. Goldstine, and S. Greibach. Some uniformely erasable families of languages. Theoret. Comput. Sci., 2:29–44, 1976.MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Ginsburg and M. A. Harrison. Bracketed context-free languages. J. Comput. System Sei., 1:1–23, 1967.MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Ginsburg and H. G. Rice. Two families of languages related to ALGOL. J. Assoc. Comput. Mach., 9:350–371, 1962.MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Ginsburg and E. Spanier. Finite-turn pushdown automata. SIAM J. Control, 4:429–453, 1966.MathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Ginsburg and E. Spanier. Derivation-bounded languages. J. Comput. System Sei., 2:228–250, 1968.MathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Greibach. The hardest context-free language. SIAM J. Comput., 2:304–310, 1973.MathSciNetCrossRefGoogle Scholar
  24. 24.
    S. A. Greibach. A new normal form theorem for context-free phrase structure grammars. J. Assoc. Comput. Mach., 12(1):42–52, 1965.MathSciNetCrossRefGoogle Scholar
  25. 25.
    S. A. Greibach. Jump pda’s, deterministic context-free languages, principal afdl’s and polynomial time recognition. In Proc. 5th Annual ACM Conf. Theory of Computing, pages 20–28, 1973.zbMATHGoogle Scholar
  26. 26.
    S. A. Greibach. Jump pda’s and hierarchies of deterministic cf languages. SIAM J. Comput., 3:111–127, 1974.MathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Gruska. A few remarks on the index of context-free grammars and languages. Inform. and Control, 19:216–223, 1971.MathSciNetCrossRefGoogle Scholar
  28. 28.
    M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.zbMATHGoogle Scholar
  29. 29.
    J. E. Hoperoft and J. D. Ullman. Formal Languages and Their Relation to Automata. Addison-Wesley, 1969.Google Scholar
  30. 30.
    J. E. Hoperoft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, 1979.zbMATHGoogle Scholar
  31. 31.
    G. Hotz. Normal form transformations of context-free grammars. Acta Cybernetics, 4(1):65–84, 1978.MathSciNetzbMATHGoogle Scholar
  32. 32.
    G. Hotz and K. Estenfeld. Formale Sprachen. B.I.-Wissenschaftsverlag, 1981.zbMATHGoogle Scholar
  33. 33.
    G. Hotz and T. Kretschmer. The power of the Greibach normal form. Elektron. Inforrnationsverarb. Kybernet., 25(10):507–512, 1989.MathSciNetzbMATHGoogle Scholar
  34. 34.
    D.E. Knuth. On the translation of languages from left to right. Inform. and Control, 8:607–639, 1965.MathSciNetCrossRefGoogle Scholar
  35. 35.
    D. E. Knuth. A characterization of parenthesis languages. Inform. and Control, 11:269–289, 1967.CrossRefGoogle Scholar
  36. 36.
    A. J. Korenjack and J. E. Hoperoft. Simple deterministic languages. In Conference record of seventh annual symposium on switching and automata theory, pages 36–46, Berkeley, 1966.Google Scholar
  37. 37.
    W. Kuich. Formal power series, chapter 9. This volume.Google Scholar
  38. 38.
    P. M. Lewis and R. E. Stearns. Syntax-directed transduction. J. Assoc. Comput. Mach., 15(3):465–488, 1968.CrossRefGoogle Scholar
  39. 39.
    R. McNaughton. Parenthesis grammars. J. Assoc. Comput. Mach., 14(3):490–500, 1967.CrossRefGoogle Scholar
  40. 40.
    M. Nivat. Transductions des langages de Chomsky, Ch. VI,miméographié. PhD thesis, Université de Paris, 1967.Google Scholar
  41. 41.
    M. Nivat. Transductions des langages de Chomsky. Annales de l’Institut Fourier, 18:339–456, 1968.MathSciNetCrossRefGoogle Scholar
  42. 42.
    M. Oyamaguchi. The equivalence problem for realtime dpda’s. J. Assoc. Corn-put. Mach., 34:731–760, 1987.MathSciNetCrossRefGoogle Scholar
  43. 43.
    R. J. Parikh. On context-free languages. J. Assoc. Comput. Mach., 13:570–581, 1966.MathSciNetCrossRefGoogle Scholar
  44. 44.
    D. L. Pilling. Commutative regular equations and Parikh’s theorem. J. London Math. Soc., 6:663–666, 1973.MathSciNetCrossRefGoogle Scholar
  45. 45.
    D. J. Rosenkrantz. Matrix equations and normal forms for context-free grammars. J. Assoc. Comput. Mach., 14:501–507, 1967.MathSciNetCrossRefGoogle Scholar
  46. 46.
    Jacques Sakarovitch. Pushdown automata with terminal languages. In Languages and Automata Symposium, number 421 in Publication RIMS, Kyoto University, pages 15–29, 1981.Google Scholar
  47. 47.
    A. Salomaa. Formal Languages. Academic Press, 1973.zbMATHGoogle Scholar
  48. 48.
    M. P. Schützenberger. On context-free languages and pushdown automata. Inform. and Control, 6:217–255, 1963.CrossRefGoogle Scholar
  49. 49.
    G. Sénizergues. The equivalence and inclusion problems for NTS languages. J. Comput. System Sci., 31:303–331, 1985.MathSciNetCrossRefGoogle Scholar
  50. 50.
    G. Sénizergues. Church-Rosser controlled rewriting systems and equivalence problems for deterministic context-free languages. Inform. Comput., 81:265–279, 1989.MathSciNetCrossRefGoogle Scholar
  51. 51.
    E. Shamir. A representation theorem for algebraic and context-free power series in noncommuting variables. Inform. Comput., 11:39–254, 1967.MathSciNetzbMATHGoogle Scholar
  52. 52.
    S. Sippu and E. Soisalon-Soininen. Parsing Theory, Vol I. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1988.Google Scholar
  53. 53.
    L. Valiant. The equivalence problem for deterministic finite turn pushdown automata. Inform. and Control, 25:123–133, 1974.MathSciNetCrossRefGoogle Scholar
  54. 54.
    H. Wechler. Characterization of rational and algebraic power series. RA IRO Inform. Théor., 17:3–11, 1983.MathSciNetCrossRefGoogle Scholar
  55. 55.
    M. K. Yntema. Inclusion relations among families of context-free languages. Inform. and Control, 10:572–597, 1967.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Jean-Michel Autebert
  • Jean Berstel
  • Luc Boasson

There are no affiliations available

Personalised recommendations