Abstract
Regular languages and finite automata are among the oldest topics in formal language theory. The formal study of regular languages and finite automata can be traced back to the early forties, when finite state machines were used to model neuron nets by McCulloch and Pitts [83]. Since then, regular languages have been extensively studied. Results of early investigations are, for example, Kleene’s theorem establishing the equivalence of regular expressions and finite automata [69], the introduction of automata with output by Mealy [86] and Moore [88], the introduction of nondeterministic finite automata by Rabin and Scott [99], and the characterization of regular languages by congruences of finite index by Myhill [90] and Nerode [91].
Keywords
Regular Expression Regular Language Finite Automaton Input Word Deterministic Finite AutomatonPreview
Unable to display preview. Download preview PDF.
References
- 1.A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation,and Compiling, Vol. 1, Prentice-Hall, Englewood Cliffs, N.J., (1972).Google Scholar
- 2.A. V. Aho, R. Sethi, and J. D. Ullman, Compilers - Principles,Techniques, and Tools, Addison-Wesley, Reading, (1986).Google Scholar
- 3.J. C. M. Baeten and W. P. Weijland, Process Algebra, Cambridge University Press, Cambridge, (1990).Google Scholar
- 4.J. L. Balcázar, J. Diaz, and J. Gabarró, Structured Complexity I, II, EATCS Monagraphs on Theoretical Computer Science, vol. 11 and 22, Springer-Verlag, Berlin 1988 and 1990.Google Scholar
- 5.Y. Bar-Hillel, M. Perles, and E. Shamir, “On formal properties of simple phrase structure grammars”, Z. Phonetik. Sprachwiss. Kommunikationsforsch. 14 (1961) 143–172.MathSciNetMATHGoogle Scholar
- 6.J.-C. Birget, “State-Complexity of Finite-State Devices, State Compressibility and Incompressibility”, Mathematical Systems Theory 26 (1993) 237–269.MathSciNetMATHGoogle Scholar
- 7.G. Berry and R. Sethi, “From Regular Expressions to Deterministic Automata”, Theoretical Computer Science 48 (1986) 117–126.MathSciNetMATHGoogle Scholar
- 8.J. Berstel, Transductions and Context-Free Languages, Teubner, Stuttgart, (1979).MATHGoogle Scholar
- 9.J. Berstel and M. Morcrette, “Compact representation of patterns by finite automata”, Pixim 89: L’Image Numérique à Paris, André Gagalowicz, ed., Hermes, Paris, (1989), pp.387–395.Google Scholar
- 10.J. Berstel and C. Reutenauer, Rational Series and Their Languages, EATCS Monographs on Theoretical Computer Science, Springer-Verlag, Berlin (1988).Google Scholar
- 11.W. Brauer, Automatentheorie, Teubner, Stuttgart, (1984).MATHGoogle Scholar
- 12.W. Brauer, “On Minimizing Finite Automata”, EATCS Bulletin 35 (1988) 113–116.MATHGoogle Scholar
- 13.A. Brüggemann-Klein, “Regular expressions into finite automata”, Theoretical Computer Science 120 (1993) 197–213.MathSciNetMATHGoogle Scholar
- 14.A. Brüggemann-Klein and D. Wood, “Deterministic Regular Languages”, Proceedings of STACS’92, Lecture Notes in Computer Science 577, A. Finkel and M. Jantzen (eds.), Springer-Verlag, Berlin (1992) 173–184.Google Scholar
- 15.J. A. Brzozowski, “Canonical regular expressions and minimal state graphs for definite events”, Mathematical Theory of Automata, vol. 12 of MRI Symposia Series, Polytechnic Press, NY, (1962), 529–561.Google Scholar
- 16.J. A. Brzozowski, “Derivatives of Regular Expressions”, Journal of the ACM 11:4 (1964) 481–494.MathSciNetMATHGoogle Scholar
- 17.J. A. Brzozowski, “Developments in the theory of regular languages”, Information Processing 80, S. H. Lavington edited, Proceedings of IFIP Congress 80, North-Holland, Amsterdam (1980) 29–40.Google Scholar
- 18.J. A. Brzozowski, “Open problems about regular languages”, Formal Language Theory - Perspectives and open problems, R. V. Book (ed.), Academic Press, New York, (1980), pp.23–47.Google Scholar
- 19.J. A. Brzozowski and E. Leiss, “On Equations for Regular Languages, Finite Automata, and Sequential Networks”, Theoretical Computer Science 10 (1980) 19–35.MathSciNetMATHGoogle Scholar
- 20.J. A. Brzozowski and I. Simon, “Characterization of locally testable events”, Discrete Mathematics 4 (1973) 243–271.MathSciNetMATHGoogle Scholar
- 21.J. A. Brzozowski and M. Yoeli, Digital Networks, Prentice-Hall, Englewood Cliffs, N. J., (1976).Google Scholar
- 22.A. K. Chandra and L. J. Stockmeyer, “Alternation”, FOCS 17 (1976) 98–108.MathSciNetGoogle Scholar
- 23.A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, “Alternation”, Journal of the ACM 28 (1981) 114–133.MathSciNetMATHGoogle Scholar
- 24.J. H. Chang, O. H. Ibarra and B. Ravikumar, “Some observations concerning alternating Turing machines using small space”, Inform. Process. Lett. 25 (1987) 1–9.MathSciNetMATHGoogle Scholar
- 25.C.-H. Chang and R. Paige, “From Regular Expressions to DFA’s Using Compressed NFA’s”, Proceedings of the Third Symposium on Combinatorial Pattern Matching (1992) 90–110.Google Scholar
- 26.S. Cho and D. Huynh, “The parallel complexity of finite state automata problems”, Technical Report UTDCS-22–88, University of Texas at Dallas, (1988).Google Scholar
- 27.D. I. A. Cohen, Introduction to Computer Theory, Wiley, New York, (1991).Google Scholar
- 28.K. Culik II and S. Dube, “Rational and Affine Expressions for Image Description”, Discrete Applied Mathematics 41 (1993) 85–120.MathSciNetMATHGoogle Scholar
- 29.K. Culik II and S. Dube, “Affine Automata and Related Techniques for Generation of Complex Images”, Theoretical Computer Science 116 (1993) 373–398.MathSciNetMATHGoogle Scholar
- 30.K. Culik II, F. E. Fich and A. Salomaa, “A Homomorphic Characterization of Regular Languages”, Discrete Applied Mathematics 4 (1982)149–152.MathSciNetMATHGoogle Scholar
- 31.K. Culik II and T. Harju, “Splicing semigroups of dominoes and DNA”, Discrete Applied Mathematics 31 (1991) 261–277.MathSciNetMATHGoogle Scholar
- 32.K. Culik II and J. Karhumäki, “The equivalence problem for single-valued two-way transducers (on NPDTOL languages) is decidable”, SIAM Journal on Computing, vol. 16, no. 2 (1987) 221–230.MathSciNetMATHGoogle Scholar
- 33.K. Culik II and J. Kari, “Image Compression Using Weighted Finite Automata”, Computer and Graphics, vol. 17, 3, (1993) 305–313.Google Scholar
- 34.J. Dassow, G. Päun, A. Salomaa, “On Thinness and Slenderness of L Languages”, EATCS Bulletin 49 (1993) 152–158.MATHGoogle Scholar
- 35.F. Dejean and M. P. Schützenberger, “On a question of Eggan”, Information and Control 9 (1966) 23–25.MathSciNetMATHGoogle Scholar
- 36.A. de Luca and S. Varricchio, “On noncounting regular classes”, Theoretical Computer Science 100 (1992) 67–104.MathSciNetMATHGoogle Scholar
- 37.V. Diekert and G. Rozenberg (ed.), The Book of Traces, World Scientific, Singapore, (1995).Google Scholar
- 38.D. Drusinsky and D. Harel, “On the power of bounded concurrency I: Finite automata”, Journal of the ACM 41 (1994) 517–539.MathSciNetMATHGoogle Scholar
- 39.L. C. Eggan, “Transition graphs and the star height of regular events”, Michigan Math. J. 10 (1963) 385–397.MathSciNetMATHGoogle Scholar
- 40.A. Ehrenfeucht, R. Parikh, and G. Rozenberg, “Pumping Lemmas for Regular Sets”, SIAM Journal on Computing vol. 10, no. 3 (1981) 536–541.MathSciNetMATHGoogle Scholar
- 41.S. Eilenberg, Automata, Languages,and Machines, Vol. A, Academic Press, New York, (1974).MATHGoogle Scholar
- 42.S. Eilenberg, Automata, Languages,and Machines, Vol. B, Academic Press, New York, (1974)MATHGoogle Scholar
- 43.C. C. Elgot and J. D. Rutledge, “Operations on finite automata”, Proc. AIEE Second Ann. Symp. on Switching Theory and Logical Design, Detroit, (1961).Google Scholar
- 44.A. Fellah, Alternating Finite Automata and Related Problems, PhD Dissertation, Dept. of Math. and Computer Sci., Kent State University, (1991).Google Scholar
- 45.A. Fellah, H. Jürgensen, S. Yu, “Constructions for alternating finite automata”, Intern. J. Computer Math. 35 (1990) 117–132.MATHGoogle Scholar
- 46.M. R. Carey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, (1979.)Google Scholar
- 47.S. Ginsburg, Algebraic and automata-theoretic properties of formal languages, North-Holland, Amsterdam, (1975).MATHGoogle Scholar
- 48.V. M. Glushkov, “The abstract theory of automata”, Russian Mathematics Surveys 16 (1961) 1–53.Google Scholar
- 49.D. Gries, “Describing an Algorithm by Hoperoft”, Acta Informatica 2 (1973) 97–109.MathSciNetMATHGoogle Scholar
- 50.L. Guo, K. Salomaa, and S. Yu, “Synchronization Expressions and Languages”, Proceedings of the Sixth IEEE Symposium on Parallel and Distributed Processing (1994) 257–264.Google Scholar
- 51.M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, (1978).MATHGoogle Scholar
- 52.K. Hashiguchi, “Algorithms for Determining Relative Star Height and Star Height”, Information and Computation 78 (1988) 124–169.MathSciNetMATHGoogle Scholar
- 53.T. Head, “Formal language theory and DNA: An analysis of the generative capacity of specific recombinant behaviors”, Bull. Math. Biol. 49 (1987) 737–759.MathSciNetMATHGoogle Scholar
- 54.F. C. Hennie, Finite-State Models for Logical Machines, Wiley, New York, (1968).MATHGoogle Scholar
- 55.T. Hirst and D. Harel, “On the power of bounded concurrency II: Pushdown automata”, Journal of the ACM 41 (1994), 540–554.MathSciNetMATHGoogle Scholar
- 56.J. E. Hoperoft, “An n log n algorithm for minimizing states in a finite automaton”, in Theory of Machines and Computations, Z. Kohavi (ed.), Academic Press, New York, (1971).Google Scholar
- 57.J. E. Hoperoft and J. D. Ullman, Introduction to Automata Theory,Languages, and Computation, Addison-Wesley, Reading, (1979), 189–196.Google Scholar
- 58.J. M. Howie, Automata and Languages, Oxford University Press, Oxford, (1991).MATHGoogle Scholar
- 59.H. B. Hunt, D. J. Rosenkrantz, and T. G. Szymanski, “On the Equivalence, Containment, and Covering Problems for the Regular and Context-Free Languages”, Journal of Computer and System Sciences 12 (1976) 222–268.MathSciNetMATHGoogle Scholar
- 60.O. Ibarra, “The unsolvability of the equivalence problem for epsilon-free NGSM’s with unary input (output) alphabet and applications”, SIAM Journal on Computing 4 (1978) 524–532.MathSciNetGoogle Scholar
- 61.K. Inoue, I. Takanami, and H. Tanaguchi, “Two-Dimensional alternating Turing machines”, Proc. 14th Ann. ACM Symp. On Theory of Computing (1982) 37–46.Google Scholar
- 62.K. Inoue, I. Takanami, and H. Tanaguchi, “A note on alternating on-line Turing machines”, Information Processing Letters 15:4 (1982) 164–168.MathSciNetMATHGoogle Scholar
- 63.J. Jaffe, “A necessary and sufficient pumping lemma for regular languages”, SIGACT News (1978) 48–49.Google Scholar
- 64.T. Jiang and B. Ravikumar, “A note on the space complexity of some decision problems for finite automata”, Information Processing Letters 40 (1991) 25–31.MathSciNetMATHGoogle Scholar
- 65.T. Jiang and B. Ravikumar, “Minimal NFA Problems are Hard”, SIAM Journal on Computing 22 (1993), 1117–1141. Proceedings of 18th ICALP, Lecture Notes in Computer Science 510, Springer-Verlag, Berlin (1991) 629–640.Google Scholar
- 66.N. Jones, “Space-bounded reducibility among combinatorial problems”, Journal of Computer and System Sciences 11 (1975) 68–85.MathSciNetMATHGoogle Scholar
- 67.T. Kameda and P. Weiner, “On the state minimization of nondeterministic finite automata”, IEEE Trans. on Computers C-19 (1970) 617–627.MathSciNetGoogle Scholar
- 68.D. Kelley, Automata and Formal Languages - An Introduction, Prentice-Hall, Englewood Cliffs, N. J., (1995).Google Scholar
- 69.S. C. Kleene, “Representation of events in nerve nets and finite automata”, Automata Studies, Princeton Univ. Press, Princeton, N. J., (1996), pp.2–42.Google Scholar
- 70.D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in strings”, SIAM Journal on Computing, vol.6, no.2 (1977) 323–350.MathSciNetMATHGoogle Scholar
- 71.D. Kozen, “On parallelism in Turing machines”, Proceedings of 17th FOCS (1976) 89–97.Google Scholar
- 72.R. E. Ladner, R. J. Lipton and L. J. Stockmeyer, “Alternating pushdown automata”, Proc. 19th IEEE Symp. on Foundations of Computer Science, Ann Arbor, MI, (1978) 92–106.Google Scholar
- 73.E. Leiss, “Succinct representation of regular languages by boolean automata”, Theoretical Computer Science 13 (1981) 323–330.MathSciNetMATHGoogle Scholar
- 74.E. Leiss, “On generalized language equations”, Theoretical Computer Science 14 (1981) 63–77.MathSciNetMATHGoogle Scholar
- 75.E. Leiss, “Succinct representation of regular languages by boolean automata II”, Theoretical Computer Science 38 (1985) 133–136.MathSciNetMATHGoogle Scholar
- 76.E. Leiss, “Language equations over a one-letter alphabet with union, concatenation and star: a complete solution”, Theoretical Computer Science 131 (1994) 311–330.MathSciNetMATHGoogle Scholar
- 77.E. Leiss, “Unrestricted complementation in language equations over a one-letter alphabet”, Theoretical Computer Science 132 (1994) 71–84.MathSciNetMATHGoogle Scholar
- 78.H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, Englewood Cliffs, N. J., (1981).MATHGoogle Scholar
- 79.P. A. Lindsay, “Alternation and w-type Turing acceptors”, Theoretical Computer Science 43 (1986) 107–115.MathSciNetMATHGoogle Scholar
- 80.P. Linz, An Introduction to Formal Languages and Automata, D. C. Heath and Company, Lexington, (1990).Google Scholar
- 81.O. B. Lupanow, “über den Vergleich zweier Typen endlicher Quellen”, Prob-lerne der Kybernetik 6 (1966) 328–335, and Problemy Kibernetiki 6 (1962) (Russian original).Google Scholar
- 82.A. Mateescu, “Scattered deletion and commutativity”, Theoretical Computer Science 125 (1994) 361–371.MathSciNetMATHGoogle Scholar
- 83.W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity”, Bull. Math. Biophysics 5 (1943) 115–133.Google Scholar
- 84.R. McNaughton, Counter-Free Automata, MIT Press, Cambridge, (1971).Google Scholar
- 85.R. McNaughton and H. Yamada, “Regular Expressions and State Graphs for Automata”, Trans. IRS EC-9 (1960) 39–47. Also in Sequential Machines - Selected Papers, E. F. Moore ed., Addison-Wesley, Reading, (1964), 157–174.Google Scholar
- 86.G. H. Mealy, “A method for synthesizing sequential circuits”, Bell System Technical J. 34: 5 (1955), 1045–1079.MathSciNetGoogle Scholar
- 87.A. R. Meyer and M. J. Fischer. “Economy of description by automata, grammars, and formal systems”, FOCS 12 (1971) 188–191.Google Scholar
- 88.E. F. Moore, “Gedanken experiments on sequential machines”, Automata Studies, Princeton Univ. Press, Princeton, N.J., (1966), pp.129–153.Google Scholar
- 89.F. R. Moore, “On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata”, IEEE Trans. Computers 20 (1971), 1211–1214.MATHGoogle Scholar
- 90.J. Myhill, “Finite automata and the representation of events”, WADD TR-57624, Wright Patterson AFB, Ohio, (1957), 112–137.Google Scholar
- 91.A. Nerode, “Linear automata transformation”, Proceedings of AMS 9 (1958) 541–544.MathSciNetMATHGoogle Scholar
- 92.O. Nierstrasz, “Regular Types for Active Objects”, OOPSLA’93, 1–15.Google Scholar
- 93.M. Nivat, “Transductions des langages de Chomsky”, Ann. Inst. Fourier, Grenoble 18 (1968) 339–456.MathSciNetMATHGoogle Scholar
- 94.W. J. Paul, E. J. Prauss and R. Reischuck, “On Alternation”, Acta Inform. 14 (1980) 243–255.MathSciNetMATHGoogle Scholar
- 95.G. Páun and A. Salomaa, “Decision problems concerning the thinness of DOL languages”, EATCS Bulletin 46 (1992) 171–181.MATHGoogle Scholar
- 96.G. Páun and A. Salomaa, “Closure properties of slender languages”, Theoretical Computer Science 120 (1993) 293–301.MathSciNetMATHGoogle Scholar
- 97.G. Patin and A. Salomaa, “Thin and slender languages”, Discrete Applied Mathematics 61 (1995) 257–270.MathSciNetGoogle Scholar
- 98.D. Perrin, (Chapter 1) Finite Automata, Handbook of Theoretical Computer Science, Vol. B, J. van Leeuwen (ed.), MIT Press, (1990).Google Scholar
- 99.M. O. Rabin and D. Scott, “Finite automata and their decision problems”, IBM J. Res. 3: 2 (1959) 115–125.MathSciNetGoogle Scholar
- 100.G. N. Raney, “Sequential functions”, Journal of the ACM 5 (1958) 177.MathSciNetMATHGoogle Scholar
- 101.B. Ravikumar, “Some applications of a technique of Sakoda and Sipser”, SIGACT News, 21:4 (1990) 73–77.MathSciNetGoogle Scholar
- 102.B. Ravikumar and O. H. Ibarra, “Relating the type of ambiguity of finite automata to the succinctness of their representation”, SIAM Journal on Computing vol. 18, no. 6 (1989), 1263–1282.MathSciNetMATHGoogle Scholar
- 103.W. L. Ruzzo, “Tree-size bounded alternation”, Journal of Computer and System Sciences 21 (1980) 218–235.MathSciNetMATHGoogle Scholar
- 104.A. Salomaa, On the Reducibility of Events Represented in Automata, Annales Academiae Scientiarum Fennicae, Series A, I. Mathematica 353, (1964).Google Scholar
- 105.A. Salomaa, Theorems on the Representation of events in Moore-Automata, Turun Yliopiston Julkaisuja Annales Universitatis Turkuensis, Series A, 69, (1964).Google Scholar
- 106.A. Salomaa, Theory of Automata, Pergamon Press, Oxford, (1969).MATHGoogle Scholar
- 107.A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, Rockville, Maryland, (1981).Google Scholar
- 108.A. Salomaa, Computation and Automata, Cambridge University Press, Cambridge, (1985).MATHGoogle Scholar
- 109.A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series, Springer-Verlag, New York, (1978).MATHGoogle Scholar
- 110.K. Salomaa and S. Yu, “Loop-Free Alternating Finite Automata”, Technical Report 482, Department of Computer Science, Univ. of Western Ontatio, (1996).Google Scholar
- 111.K. Salomaa, S. Yu, Q. Zhuang, “The state complexities of some basic operations on regular languages”, Theoretical Computer Science 125 (1994) 315–328.MathSciNetMATHGoogle Scholar
- 112.M. P. Schützenberger, “Finite Counting Automata”, Information and Control 5 (1962) 91–107.MathSciNetGoogle Scholar
- 113.M. P. Schützenberger, “On finite monoids having only trivial subgroups”, Information and Control 8 (1965) 190–194.MathSciNetMATHGoogle Scholar
- 114.M.P. Schützenberger, “Sur les relations rationelles”, in Proc. 2nd GI Conference, Automata Theory and Formal languages, H. Braklage (ed.), Lecture Notes in Computer Science 33, Springer-Verlag, Berlin (1975) 209–213.Google Scholar
- 115.J. Shallit, “Numeration systems, linear recurrences, and regular sets”, Information and Computation 113 (1994) 331–347.MathSciNetMATHGoogle Scholar
- 116.J. Shallit and J. Stolfi, “Two methods for generating fractals”, Computers & Graphics 13 (1989) 185–191.Google Scholar
- 117.P. W. Shor, “A Counterexample to the triangle conjecture”, J. Combinatorial Theory, Series A (1985) 110–112.MathSciNetGoogle Scholar
- 118.J. L. A. van de Snepscheut, What Computing Is All About, Springer-Verlag, New York, (1993).MATHGoogle Scholar
- 119.L. Stockmeyer and A. Meyer, “Word problems requiring exponential time (preliminary report)”, Proceedings of the 5th ACM Symposium on Theory of Computing, (1973) 1–9.Google Scholar
- 120.A. Szilard, S. Yu, K. Zhang, and J. Shallit, “Characterizing Regular Languages with Polynomial Densities”, Proceedings of the 17th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 629 Springer-Verlag, Berlin (1992) 494–503.Google Scholar
- 121.K. Thompson, “Regular Expression Search Algorithm”, Communications of the ACM 11:6 (1968) 410–422.Google Scholar
- 122.B. W. Watson, Taxonomies and Toolkits of Regular Language Algorithms, PhD Dissertation, Department of Mathematics and Computing Science, Eindhoven University of Technology, (1995).Google Scholar
- 123.D. Wood, Theory of Computation, Wiley, New York, (1987).MATHGoogle Scholar
- 124.S. Yu and Q. Zhuang, “On the State Complexity of Intersection of Regular Languages”, ACM SIGACT News, vol. 22, no. 3, (1991) 52–54.Google Scholar
- 125.Y. Zalcstein, “Locally testable languages”, Journal of Computer and System Sciences 6 (1972) 151–167.MathSciNetMATHGoogle Scholar