Regular languages and finite automata are among the oldest topics in formal language theory. The formal study of regular languages and finite automata can be traced back to the early forties, when finite state machines were used to model neuron nets by McCulloch and Pitts [83]. Since then, regular languages have been extensively studied. Results of early investigations are, for example, Kleene’s theorem establishing the equivalence of regular expressions and finite automata [69], the introduction of automata with output by Mealy [86] and Moore [88], the introduction of nondeterministic finite automata by Rabin and Scott [99], and the characterization of regular languages by congruences of finite index by Myhill [90] and Nerode [91].


Regular Expression Regular Language Finite Automaton Input Word Deterministic Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation,and Compiling, Vol. 1, Prentice-Hall, Englewood Cliffs, N.J., (1972).Google Scholar
  2. 2.
    A. V. Aho, R. Sethi, and J. D. Ullman, Compilers - Principles,Techniques, and Tools, Addison-Wesley, Reading, (1986).Google Scholar
  3. 3.
    J. C. M. Baeten and W. P. Weijland, Process Algebra, Cambridge University Press, Cambridge, (1990).Google Scholar
  4. 4.
    J. L. Balcázar, J. Diaz, and J. Gabarró, Structured Complexity I, II, EATCS Monagraphs on Theoretical Computer Science, vol. 11 and 22, Springer-Verlag, Berlin 1988 and 1990.Google Scholar
  5. 5.
    Y. Bar-Hillel, M. Perles, and E. Shamir, “On formal properties of simple phrase structure grammars”, Z. Phonetik. Sprachwiss. Kommunikationsforsch. 14 (1961) 143–172.MathSciNetMATHGoogle Scholar
  6. 6.
    J.-C. Birget, “State-Complexity of Finite-State Devices, State Compressibility and Incompressibility”, Mathematical Systems Theory 26 (1993) 237–269.MathSciNetMATHGoogle Scholar
  7. 7.
    G. Berry and R. Sethi, “From Regular Expressions to Deterministic Automata”, Theoretical Computer Science 48 (1986) 117–126.MathSciNetMATHGoogle Scholar
  8. 8.
    J. Berstel, Transductions and Context-Free Languages, Teubner, Stuttgart, (1979).MATHGoogle Scholar
  9. 9.
    J. Berstel and M. Morcrette, “Compact representation of patterns by finite automata”, Pixim 89: L’Image Numérique à Paris, André Gagalowicz, ed., Hermes, Paris, (1989), pp.387–395.Google Scholar
  10. 10.
    J. Berstel and C. Reutenauer, Rational Series and Their Languages, EATCS Monographs on Theoretical Computer Science, Springer-Verlag, Berlin (1988).Google Scholar
  11. 11.
    W. Brauer, Automatentheorie, Teubner, Stuttgart, (1984).MATHGoogle Scholar
  12. 12.
    W. Brauer, “On Minimizing Finite Automata”, EATCS Bulletin 35 (1988) 113–116.MATHGoogle Scholar
  13. 13.
    A. Brüggemann-Klein, “Regular expressions into finite automata”, Theoretical Computer Science 120 (1993) 197–213.MathSciNetMATHGoogle Scholar
  14. 14.
    A. Brüggemann-Klein and D. Wood, “Deterministic Regular Languages”, Proceedings of STACS’92, Lecture Notes in Computer Science 577, A. Finkel and M. Jantzen (eds.), Springer-Verlag, Berlin (1992) 173–184.Google Scholar
  15. 15.
    J. A. Brzozowski, “Canonical regular expressions and minimal state graphs for definite events”, Mathematical Theory of Automata, vol. 12 of MRI Symposia Series, Polytechnic Press, NY, (1962), 529–561.Google Scholar
  16. 16.
    J. A. Brzozowski, “Derivatives of Regular Expressions”, Journal of the ACM 11:4 (1964) 481–494.MathSciNetMATHGoogle Scholar
  17. 17.
    J. A. Brzozowski, “Developments in the theory of regular languages”, Information Processing 80, S. H. Lavington edited, Proceedings of IFIP Congress 80, North-Holland, Amsterdam (1980) 29–40.Google Scholar
  18. 18.
    J. A. Brzozowski, “Open problems about regular languages”, Formal Language Theory - Perspectives and open problems, R. V. Book (ed.), Academic Press, New York, (1980), pp.23–47.Google Scholar
  19. 19.
    J. A. Brzozowski and E. Leiss, “On Equations for Regular Languages, Finite Automata, and Sequential Networks”, Theoretical Computer Science 10 (1980) 19–35.MathSciNetMATHGoogle Scholar
  20. 20.
    J. A. Brzozowski and I. Simon, “Characterization of locally testable events”, Discrete Mathematics 4 (1973) 243–271.MathSciNetMATHGoogle Scholar
  21. 21.
    J. A. Brzozowski and M. Yoeli, Digital Networks, Prentice-Hall, Englewood Cliffs, N. J., (1976).Google Scholar
  22. 22.
    A. K. Chandra and L. J. Stockmeyer, “Alternation”, FOCS 17 (1976) 98–108.MathSciNetGoogle Scholar
  23. 23.
    A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, “Alternation”, Journal of the ACM 28 (1981) 114–133.MathSciNetMATHGoogle Scholar
  24. 24.
    J. H. Chang, O. H. Ibarra and B. Ravikumar, “Some observations concerning alternating Turing machines using small space”, Inform. Process. Lett. 25 (1987) 1–9.MathSciNetMATHGoogle Scholar
  25. 25.
    C.-H. Chang and R. Paige, “From Regular Expressions to DFA’s Using Compressed NFA’s”, Proceedings of the Third Symposium on Combinatorial Pattern Matching (1992) 90–110.Google Scholar
  26. 26.
    S. Cho and D. Huynh, “The parallel complexity of finite state automata problems”, Technical Report UTDCS-22–88, University of Texas at Dallas, (1988).Google Scholar
  27. 27.
    D. I. A. Cohen, Introduction to Computer Theory, Wiley, New York, (1991).Google Scholar
  28. 28.
    K. Culik II and S. Dube, “Rational and Affine Expressions for Image Description”, Discrete Applied Mathematics 41 (1993) 85–120.MathSciNetMATHGoogle Scholar
  29. 29.
    K. Culik II and S. Dube, “Affine Automata and Related Techniques for Generation of Complex Images”, Theoretical Computer Science 116 (1993) 373–398.MathSciNetMATHGoogle Scholar
  30. 30.
    K. Culik II, F. E. Fich and A. Salomaa, “A Homomorphic Characterization of Regular Languages”, Discrete Applied Mathematics 4 (1982)149–152.MathSciNetMATHGoogle Scholar
  31. 31.
    K. Culik II and T. Harju, “Splicing semigroups of dominoes and DNA”, Discrete Applied Mathematics 31 (1991) 261–277.MathSciNetMATHGoogle Scholar
  32. 32.
    K. Culik II and J. Karhumäki, “The equivalence problem for single-valued two-way transducers (on NPDTOL languages) is decidable”, SIAM Journal on Computing, vol. 16, no. 2 (1987) 221–230.MathSciNetMATHGoogle Scholar
  33. 33.
    K. Culik II and J. Kari, “Image Compression Using Weighted Finite Automata”, Computer and Graphics, vol. 17, 3, (1993) 305–313.Google Scholar
  34. 34.
    J. Dassow, G. Päun, A. Salomaa, “On Thinness and Slenderness of L Languages”, EATCS Bulletin 49 (1993) 152–158.MATHGoogle Scholar
  35. 35.
    F. Dejean and M. P. Schützenberger, “On a question of Eggan”, Information and Control 9 (1966) 23–25.MathSciNetMATHGoogle Scholar
  36. 36.
    A. de Luca and S. Varricchio, “On noncounting regular classes”, Theoretical Computer Science 100 (1992) 67–104.MathSciNetMATHGoogle Scholar
  37. 37.
    V. Diekert and G. Rozenberg (ed.), The Book of Traces, World Scientific, Singapore, (1995).Google Scholar
  38. 38.
    D. Drusinsky and D. Harel, “On the power of bounded concurrency I: Finite automata”, Journal of the ACM 41 (1994) 517–539.MathSciNetMATHGoogle Scholar
  39. 39.
    L. C. Eggan, “Transition graphs and the star height of regular events”, Michigan Math. J. 10 (1963) 385–397.MathSciNetMATHGoogle Scholar
  40. 40.
    A. Ehrenfeucht, R. Parikh, and G. Rozenberg, “Pumping Lemmas for Regular Sets”, SIAM Journal on Computing vol. 10, no. 3 (1981) 536–541.MathSciNetMATHGoogle Scholar
  41. 41.
    S. Eilenberg, Automata, Languages,and Machines, Vol. A, Academic Press, New York, (1974).MATHGoogle Scholar
  42. 42.
    S. Eilenberg, Automata, Languages,and Machines, Vol. B, Academic Press, New York, (1974)MATHGoogle Scholar
  43. 43.
    C. C. Elgot and J. D. Rutledge, “Operations on finite automata”, Proc. AIEE Second Ann. Symp. on Switching Theory and Logical Design, Detroit, (1961).Google Scholar
  44. 44.
    A. Fellah, Alternating Finite Automata and Related Problems, PhD Dissertation, Dept. of Math. and Computer Sci., Kent State University, (1991).Google Scholar
  45. 45.
    A. Fellah, H. Jürgensen, S. Yu, “Constructions for alternating finite automata”, Intern. J. Computer Math. 35 (1990) 117–132.MATHGoogle Scholar
  46. 46.
    M. R. Carey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, (1979.)Google Scholar
  47. 47.
    S. Ginsburg, Algebraic and automata-theoretic properties of formal languages, North-Holland, Amsterdam, (1975).MATHGoogle Scholar
  48. 48.
    V. M. Glushkov, “The abstract theory of automata”, Russian Mathematics Surveys 16 (1961) 1–53.Google Scholar
  49. 49.
    D. Gries, “Describing an Algorithm by Hoperoft”, Acta Informatica 2 (1973) 97–109.MathSciNetMATHGoogle Scholar
  50. 50.
    L. Guo, K. Salomaa, and S. Yu, “Synchronization Expressions and Languages”, Proceedings of the Sixth IEEE Symposium on Parallel and Distributed Processing (1994) 257–264.Google Scholar
  51. 51.
    M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, (1978).MATHGoogle Scholar
  52. 52.
    K. Hashiguchi, “Algorithms for Determining Relative Star Height and Star Height”, Information and Computation 78 (1988) 124–169.MathSciNetMATHGoogle Scholar
  53. 53.
    T. Head, “Formal language theory and DNA: An analysis of the generative capacity of specific recombinant behaviors”, Bull. Math. Biol. 49 (1987) 737–759.MathSciNetMATHGoogle Scholar
  54. 54.
    F. C. Hennie, Finite-State Models for Logical Machines, Wiley, New York, (1968).MATHGoogle Scholar
  55. 55.
    T. Hirst and D. Harel, “On the power of bounded concurrency II: Pushdown automata”, Journal of the ACM 41 (1994), 540–554.MathSciNetMATHGoogle Scholar
  56. 56.
    J. E. Hoperoft, “An n log n algorithm for minimizing states in a finite automaton”, in Theory of Machines and Computations, Z. Kohavi (ed.), Academic Press, New York, (1971).Google Scholar
  57. 57.
    J. E. Hoperoft and J. D. Ullman, Introduction to Automata Theory,Languages, and Computation, Addison-Wesley, Reading, (1979), 189–196.Google Scholar
  58. 58.
    J. M. Howie, Automata and Languages, Oxford University Press, Oxford, (1991).MATHGoogle Scholar
  59. 59.
    H. B. Hunt, D. J. Rosenkrantz, and T. G. Szymanski, “On the Equivalence, Containment, and Covering Problems for the Regular and Context-Free Languages”, Journal of Computer and System Sciences 12 (1976) 222–268.MathSciNetMATHGoogle Scholar
  60. 60.
    O. Ibarra, “The unsolvability of the equivalence problem for epsilon-free NGSM’s with unary input (output) alphabet and applications”, SIAM Journal on Computing 4 (1978) 524–532.MathSciNetGoogle Scholar
  61. 61.
    K. Inoue, I. Takanami, and H. Tanaguchi, “Two-Dimensional alternating Turing machines”, Proc. 14th Ann. ACM Symp. On Theory of Computing (1982) 37–46.Google Scholar
  62. 62.
    K. Inoue, I. Takanami, and H. Tanaguchi, “A note on alternating on-line Turing machines”, Information Processing Letters 15:4 (1982) 164–168.MathSciNetMATHGoogle Scholar
  63. 63.
    J. Jaffe, “A necessary and sufficient pumping lemma for regular languages”, SIGACT News (1978) 48–49.Google Scholar
  64. 64.
    T. Jiang and B. Ravikumar, “A note on the space complexity of some decision problems for finite automata”, Information Processing Letters 40 (1991) 25–31.MathSciNetMATHGoogle Scholar
  65. 65.
    T. Jiang and B. Ravikumar, “Minimal NFA Problems are Hard”, SIAM Journal on Computing 22 (1993), 1117–1141. Proceedings of 18th ICALP, Lecture Notes in Computer Science 510, Springer-Verlag, Berlin (1991) 629–640.Google Scholar
  66. 66.
    N. Jones, “Space-bounded reducibility among combinatorial problems”, Journal of Computer and System Sciences 11 (1975) 68–85.MathSciNetMATHGoogle Scholar
  67. 67.
    T. Kameda and P. Weiner, “On the state minimization of nondeterministic finite automata”, IEEE Trans. on Computers C-19 (1970) 617–627.MathSciNetGoogle Scholar
  68. 68.
    D. Kelley, Automata and Formal Languages - An Introduction, Prentice-Hall, Englewood Cliffs, N. J., (1995).Google Scholar
  69. 69.
    S. C. Kleene, “Representation of events in nerve nets and finite automata”, Automata Studies, Princeton Univ. Press, Princeton, N. J., (1996), pp.2–42.Google Scholar
  70. 70.
    D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in strings”, SIAM Journal on Computing, vol.6, no.2 (1977) 323–350.MathSciNetMATHGoogle Scholar
  71. 71.
    D. Kozen, “On parallelism in Turing machines”, Proceedings of 17th FOCS (1976) 89–97.Google Scholar
  72. 72.
    R. E. Ladner, R. J. Lipton and L. J. Stockmeyer, “Alternating pushdown automata”, Proc. 19th IEEE Symp. on Foundations of Computer Science, Ann Arbor, MI, (1978) 92–106.Google Scholar
  73. 73.
    E. Leiss, “Succinct representation of regular languages by boolean automata”, Theoretical Computer Science 13 (1981) 323–330.MathSciNetMATHGoogle Scholar
  74. 74.
    E. Leiss, “On generalized language equations”, Theoretical Computer Science 14 (1981) 63–77.MathSciNetMATHGoogle Scholar
  75. 75.
    E. Leiss, “Succinct representation of regular languages by boolean automata II”, Theoretical Computer Science 38 (1985) 133–136.MathSciNetMATHGoogle Scholar
  76. 76.
    E. Leiss, “Language equations over a one-letter alphabet with union, concatenation and star: a complete solution”, Theoretical Computer Science 131 (1994) 311–330.MathSciNetMATHGoogle Scholar
  77. 77.
    E. Leiss, “Unrestricted complementation in language equations over a one-letter alphabet”, Theoretical Computer Science 132 (1994) 71–84.MathSciNetMATHGoogle Scholar
  78. 78.
    H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, Englewood Cliffs, N. J., (1981).MATHGoogle Scholar
  79. 79.
    P. A. Lindsay, “Alternation and w-type Turing acceptors”, Theoretical Computer Science 43 (1986) 107–115.MathSciNetMATHGoogle Scholar
  80. 80.
    P. Linz, An Introduction to Formal Languages and Automata, D. C. Heath and Company, Lexington, (1990).Google Scholar
  81. 81.
    O. B. Lupanow, “über den Vergleich zweier Typen endlicher Quellen”, Prob-lerne der Kybernetik 6 (1966) 328–335, and Problemy Kibernetiki 6 (1962) (Russian original).Google Scholar
  82. 82.
    A. Mateescu, “Scattered deletion and commutativity”, Theoretical Computer Science 125 (1994) 361–371.MathSciNetMATHGoogle Scholar
  83. 83.
    W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity”, Bull. Math. Biophysics 5 (1943) 115–133.Google Scholar
  84. 84.
    R. McNaughton, Counter-Free Automata, MIT Press, Cambridge, (1971).Google Scholar
  85. 85.
    R. McNaughton and H. Yamada, “Regular Expressions and State Graphs for Automata”, Trans. IRS EC-9 (1960) 39–47. Also in Sequential Machines - Selected Papers, E. F. Moore ed., Addison-Wesley, Reading, (1964), 157–174.Google Scholar
  86. 86.
    G. H. Mealy, “A method for synthesizing sequential circuits”, Bell System Technical J. 34: 5 (1955), 1045–1079.MathSciNetGoogle Scholar
  87. 87.
    A. R. Meyer and M. J. Fischer. “Economy of description by automata, grammars, and formal systems”, FOCS 12 (1971) 188–191.Google Scholar
  88. 88.
    E. F. Moore, “Gedanken experiments on sequential machines”, Automata Studies, Princeton Univ. Press, Princeton, N.J., (1966), pp.129–153.Google Scholar
  89. 89.
    F. R. Moore, “On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata”, IEEE Trans. Computers 20 (1971), 1211–1214.MATHGoogle Scholar
  90. 90.
    J. Myhill, “Finite automata and the representation of events”, WADD TR-57624, Wright Patterson AFB, Ohio, (1957), 112–137.Google Scholar
  91. 91.
    A. Nerode, “Linear automata transformation”, Proceedings of AMS 9 (1958) 541–544.MathSciNetMATHGoogle Scholar
  92. 92.
    O. Nierstrasz, “Regular Types for Active Objects”, OOPSLA’93, 1–15.Google Scholar
  93. 93.
    M. Nivat, “Transductions des langages de Chomsky”, Ann. Inst. Fourier, Grenoble 18 (1968) 339–456.MathSciNetMATHGoogle Scholar
  94. 94.
    W. J. Paul, E. J. Prauss and R. Reischuck, “On Alternation”, Acta Inform. 14 (1980) 243–255.MathSciNetMATHGoogle Scholar
  95. 95.
    G. Páun and A. Salomaa, “Decision problems concerning the thinness of DOL languages”, EATCS Bulletin 46 (1992) 171–181.MATHGoogle Scholar
  96. 96.
    G. Páun and A. Salomaa, “Closure properties of slender languages”, Theoretical Computer Science 120 (1993) 293–301.MathSciNetMATHGoogle Scholar
  97. 97.
    G. Patin and A. Salomaa, “Thin and slender languages”, Discrete Applied Mathematics 61 (1995) 257–270.MathSciNetGoogle Scholar
  98. 98.
    D. Perrin, (Chapter 1) Finite Automata, Handbook of Theoretical Computer Science, Vol. B, J. van Leeuwen (ed.), MIT Press, (1990).Google Scholar
  99. 99.
    M. O. Rabin and D. Scott, “Finite automata and their decision problems”, IBM J. Res. 3: 2 (1959) 115–125.MathSciNetGoogle Scholar
  100. 100.
    G. N. Raney, “Sequential functions”, Journal of the ACM 5 (1958) 177.MathSciNetMATHGoogle Scholar
  101. 101.
    B. Ravikumar, “Some applications of a technique of Sakoda and Sipser”, SIGACT News, 21:4 (1990) 73–77.MathSciNetGoogle Scholar
  102. 102.
    B. Ravikumar and O. H. Ibarra, “Relating the type of ambiguity of finite automata to the succinctness of their representation”, SIAM Journal on Computing vol. 18, no. 6 (1989), 1263–1282.MathSciNetMATHGoogle Scholar
  103. 103.
    W. L. Ruzzo, “Tree-size bounded alternation”, Journal of Computer and System Sciences 21 (1980) 218–235.MathSciNetMATHGoogle Scholar
  104. 104.
    A. Salomaa, On the Reducibility of Events Represented in Automata, Annales Academiae Scientiarum Fennicae, Series A, I. Mathematica 353, (1964).Google Scholar
  105. 105.
    A. Salomaa, Theorems on the Representation of events in Moore-Automata, Turun Yliopiston Julkaisuja Annales Universitatis Turkuensis, Series A, 69, (1964).Google Scholar
  106. 106.
    A. Salomaa, Theory of Automata, Pergamon Press, Oxford, (1969).MATHGoogle Scholar
  107. 107.
    A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, Rockville, Maryland, (1981).Google Scholar
  108. 108.
    A. Salomaa, Computation and Automata, Cambridge University Press, Cambridge, (1985).MATHGoogle Scholar
  109. 109.
    A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series, Springer-Verlag, New York, (1978).MATHGoogle Scholar
  110. 110.
    K. Salomaa and S. Yu, “Loop-Free Alternating Finite Automata”, Technical Report 482, Department of Computer Science, Univ. of Western Ontatio, (1996).Google Scholar
  111. 111.
    K. Salomaa, S. Yu, Q. Zhuang, “The state complexities of some basic operations on regular languages”, Theoretical Computer Science 125 (1994) 315–328.MathSciNetMATHGoogle Scholar
  112. 112.
    M. P. Schützenberger, “Finite Counting Automata”, Information and Control 5 (1962) 91–107.MathSciNetGoogle Scholar
  113. 113.
    M. P. Schützenberger, “On finite monoids having only trivial subgroups”, Information and Control 8 (1965) 190–194.MathSciNetMATHGoogle Scholar
  114. 114.
    M.P. Schützenberger, “Sur les relations rationelles”, in Proc. 2nd GI Conference, Automata Theory and Formal languages, H. Braklage (ed.), Lecture Notes in Computer Science 33, Springer-Verlag, Berlin (1975) 209–213.Google Scholar
  115. 115.
    J. Shallit, “Numeration systems, linear recurrences, and regular sets”, Information and Computation 113 (1994) 331–347.MathSciNetMATHGoogle Scholar
  116. 116.
    J. Shallit and J. Stolfi, “Two methods for generating fractals”, Computers & Graphics 13 (1989) 185–191.Google Scholar
  117. 117.
    P. W. Shor, “A Counterexample to the triangle conjecture”, J. Combinatorial Theory, Series A (1985) 110–112.MathSciNetGoogle Scholar
  118. 118.
    J. L. A. van de Snepscheut, What Computing Is All About, Springer-Verlag, New York, (1993).MATHGoogle Scholar
  119. 119.
    L. Stockmeyer and A. Meyer, “Word problems requiring exponential time (preliminary report)”, Proceedings of the 5th ACM Symposium on Theory of Computing, (1973) 1–9.Google Scholar
  120. 120.
    A. Szilard, S. Yu, K. Zhang, and J. Shallit, “Characterizing Regular Languages with Polynomial Densities”, Proceedings of the 17th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 629 Springer-Verlag, Berlin (1992) 494–503.Google Scholar
  121. 121.
    K. Thompson, “Regular Expression Search Algorithm”, Communications of the ACM 11:6 (1968) 410–422.Google Scholar
  122. 122.
    B. W. Watson, Taxonomies and Toolkits of Regular Language Algorithms, PhD Dissertation, Department of Mathematics and Computing Science, Eindhoven University of Technology, (1995).Google Scholar
  123. 123.
    D. Wood, Theory of Computation, Wiley, New York, (1987).MATHGoogle Scholar
  124. 124.
    S. Yu and Q. Zhuang, “On the State Complexity of Intersection of Regular Languages”, ACM SIGACT News, vol. 22, no. 3, (1991) 52–54.Google Scholar
  125. 125.
    Y. Zalcstein, “Locally testable languages”, Journal of Computer and System Sciences 6 (1972) 151–167.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Sheng Yu

There are no affiliations available

Personalised recommendations