Advertisement

Regularity and Finiteness Conditions

  • Aldo de Luca
  • Stefano Varricchio
Chapter

Abstract

The aim of this chapter is to present some recent research work in the combinatorial aspects of the theory of semigroups which are of great interest both for Algebra and Theoretical Computer Science. This research mainly concerns that part of combinatorics of finite and infinite words over a finite alphabet, which is usually called the theory of “unavoidable” regularities. The book by Lothaire [77] can be considered an excellent introduction to this theory.

Keywords

Word Problem Regular Language Finiteness Condition Semi Group Finite Alphabet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Adjan, The Burnside problem and identities in groups, Springer-Verlag, Berlin 1978.Google Scholar
  2. 2.
    S. I. Adjan and I. G. Lysionok, The method of classification of periodic words and the Burnside problem, Contemporary Mathematics 131 1992, 13–28.MathSciNetGoogle Scholar
  3. 3.
    A. V. Anisimov, Group Languages, Kibernetika 4 1971, 18–24.MathSciNetGoogle Scholar
  4. 4.
    D. B. Bean, A. E. Ehrenfeucht and G. McNulty, Avoidable patterns in strings of symbols, Pacific J. Math. 85 1979, 261–294.MathSciNetzbMATHGoogle Scholar
  5. 5.
    J. Berstel, Transductions and Context-Free Languages, Teubner, Stuttgart 1979.zbMATHGoogle Scholar
  6. 6.
    J. Berstel and D. Perrin, Theory of Codes, Academic Press, New York 1985.zbMATHGoogle Scholar
  7. 7.
    J. C. Birget and J. Rhodes, Almost finite expansions of arbitrary semigroups, Journal of Pure and Applied Algebra 32 1984, 239–287.MathSciNetzbMATHGoogle Scholar
  8. 8.
    R. D. Blyth, Rewriting products of group elements, (Ph.D. Thesis, 1987, University of Illinois at Urbana-Champain), see also Rewriting products of group elements, I, J. of Algebra 116 1988, 506–521.Google Scholar
  9. 9.
    R. D. Blyth and A. H. Rhemtulla, Rewritable products in FC-by-finite groups, Canad. J. Math. 41 1989, 369–384.MathSciNetzbMATHGoogle Scholar
  10. 10.
    L. Boasson, Un critére de rationalité des langages algébriques, in: Automata, Languages and Programming, pp. 359–365, (M. Nivat ed.), North Holland, Amsterdam 1973.Google Scholar
  11. 11.
    D. P. Bovet and S. Varricchio, On the regularity of languages on a binary alphabet generated by copying systems, Information Processing Letters 44 1992, 119–123.MathSciNetzbMATHGoogle Scholar
  12. 12.
    T. C. Brown, An interesting combinatorial method in the theory of locally finite semigroups, Pacific J. of Math. 36 1971, 285–289.MathSciNetzbMATHGoogle Scholar
  13. 13.
    T. C. Brown, On Van der Waerden’s Theorem and the theorem of Paris and Harrington, Journal of Combinatorial Theory, Ser. A, 30 1981, 108–111.MathSciNetzbMATHGoogle Scholar
  14. 14.
    J. Brzozowski, K. Culik II and A. Gabriellan, Classification of noncounting events, J. Comput. System Sci. 5 1971, 41–53.MathSciNetzbMATHGoogle Scholar
  15. 15.
    J. Brzozowski, Open problems about regular languages, in: R. V. Book, ed., Formal Language Theory, Perspectives and Open Problems, Academic Press, London, New York 1980, 23–45.Google Scholar
  16. 16.
    A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, vol.1, 1961, vol.2, 1967, Mathematical Surveys, Number 7, American Mathematical Society, Providence, Rhode Island.Google Scholar
  17. 17.
    M. Coudrain and M. P. Schützenberger, Une condition de finitude des monoides finiment engendrés, C. R. Acad. Sc. Paris, Ser. A,262 1966, 1149–1151.zbMATHGoogle Scholar
  18. 18.
    M. Curzio, P. Longobardi and M. Maj, Su di un problema combinatorio in teoria dei gruppi, Atti Acc. Lincei Rend.fis. VIII 74 1983, 136–142.zbMATHGoogle Scholar
  19. 19.
    M. Curzio, P. Longobardi, M. Maj and D. J. S. Robinson, A permutational property of groups, Arch.math. 44 1985, 385–389.MathSciNetzbMATHGoogle Scholar
  20. 20.
    F. M. Dekking, Strongly non repetitive sequences and progression-free setsJ. Comb. Theory, Ser. A,27 1979, 181–185.zbMATHGoogle Scholar
  21. 21.
    A. de Luca, A note on the Burnside problem for semigroups, Semigroup Forum 31 1985, 251–254.MathSciNetzbMATHGoogle Scholar
  22. 22.
    A. de Luca and A. Restivo, A finiteness condition for finitely generated semi-groups, Semigroup Forum 28 1984, 123–134.MathSciNetzbMATHGoogle Scholar
  23. 23.
    A. de Luca, A. Restivo and S. Salemi, On the centers of a languages, Theoretical Computer Science 24 1983, 21–34.MathSciNetzbMATHGoogle Scholar
  24. 24.
    A. de Luca and S. Varricchio, Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups, Theoretical Computer Science 63 1989, 333–348.MathSciNetzbMATHGoogle Scholar
  25. 25.
    A. de Luca and S. Varricchio, Factorial languages whose growth function is quadratically upper bounded, Information Processing Letters 30 1989, 283–288.MathSciNetzbMATHGoogle Scholar
  26. 26.
    A. de Luca and S. Varricchio, On non counting regular classes, Proc.s of the 17° ICALP, 1990, Lecture Notes in Computer Science, 443 Springer-Verlag, Berlin 1990, 74–87.Google Scholar
  27. 27.
    A. de Luca and S. Varricchio, A note on w-permutable semigroups, Semigroup Forum 40 1990, 153–157.MathSciNetzbMATHGoogle Scholar
  28. 28.
    A. de Luca and S. Varricchio, A combinatorial theorem on p-power-free words and an application to semigroups, R.A.I.R.O. I. T. 24 1990, 205–228.MathSciNetzbMATHGoogle Scholar
  29. 29.
    A. de Luca and S. Varricchio, A finiteness condition for semigroups generalizing a theorem of Hotzel, J. of Algebra 136 1991, 60–72.MathSciNetzbMATHGoogle Scholar
  30. 30.
    A. de Luca and S. Varricchio, Finiteness and iteration conditions for semi-groups, Theoretical Computer Science 87 1991, 315–327.MathSciNetzbMATHGoogle Scholar
  31. 31.
    A. de Luca and S. Varricchio, Combinatorial properties of uniformly recurrent words and an application to semigroups, Int. J. Algebra Comput. 1 1991, 227–245.MathSciNetzbMATHGoogle Scholar
  32. 32.
    A. de Luca and S. Varricchio, On non counting regular classes, Theoretical Computer Science 100 1992, 67–102; MR 93i:68–136.MathSciNetzbMATHGoogle Scholar
  33. 33.
    A. de Luca and S. Varricchio, On finitely recognizable semigroups, Acta Informatica 29 1992, 483–498.MathSciNetzbMATHGoogle Scholar
  34. 34.
    A. de Luca and S. Varricchio, Some regularity conditions based on well quasi-orders, Lecture Notes in Computer Science, 583 Springer-Verlag, Berlin 1992, 356–371.MathSciNetGoogle Scholar
  35. 35.
    A. de Luca and S. Varricchio, A finiteness condition for semigroups, in “Proc.s Conference on Semigroups, Algebraic Theory and Applications to Formal Languages and Codes” Luino, 22–27 June 1992, World Scientific, Singapore 1993, 42–50.Google Scholar
  36. 36.
    A. de Luca and S. Varricchio, Well quasi-orders and regular languages, Acta Informatica 31 1994, 539–557.MathSciNetzbMATHGoogle Scholar
  37. 37.
    A. de Luca and S. Varricchio, A finiteness condition for semigroups generalizing a theorem of Coudrain and Schiitzenberger, Advances in Mathematics 108 1994, 91–103.MathSciNetzbMATHGoogle Scholar
  38. 38.
    F. Di Cerbo, Sul Problema di Burnside per i semigroppi, Tesi Università di Napoli, 1985.Google Scholar
  39. 39.
    A. P. do Lago, Sobre os Semigrupos de Burnside xn = xn+n, Master’s Thesis, Universidade de Sao Paulo, 1991, see also Proc. of Conf. Latin, 1992, Lecture Notes in Computer Science, 583 Springer-Verlag, Berlin 1992, 329–355.Google Scholar
  40. 40.
    A. P. do Lago, On the Burnside Semigroups xn = xn+n Int. J. Algebra Comput., 6 1996, 179–227.Google Scholar
  41. 41.
    A. Ehrenfeucht, R. Parikh and G. Rozenberg, Pumping lemmas for regular sets, SIAM J. of Computation 10 1981, 536–541.MathSciNetzbMATHGoogle Scholar
  42. 42.
    A. Ehrenfeucht, D. Haussler and G. Rozenberg, On regularity of context-free languages, Theoretical Computer Science 27 1983, 311–332.MathSciNetzbMATHGoogle Scholar
  43. 43.
    A. Ehrenfeucht and G. Rozenberg, On regularity of languages generated by copying systems, Discrete Appl. Math. 8 1984, 313–317.MathSciNetzbMATHGoogle Scholar
  44. 44.
    A. Ehrenfeucht and G. Rozenberg, Strong iterative pairs and the regularity of context-free languages, RAIRO, Inform. Théor. Appl. 19 1985, 43–56.zbMATHGoogle Scholar
  45. 45.
    S. Eilenberg, Automata, Languages and Machines vol. A, Academic Press, New York, 1974.zbMATHGoogle Scholar
  46. 46.
    T. Evans, Some connections between residual finiteness, finite embeddability and the word problem, J. London Math. Soc. 1 1969, 399–403.MathSciNetzbMATHGoogle Scholar
  47. 47.
    H. Furstenberg, Poincaré recurrence and number theory, Bulletin of A.M.S. 5 1981, 211–234.MathSciNetzbMATHGoogle Scholar
  48. 48.
    E. S. Golod, On nil-algebras and finitely approximable p-groups, Izv. Akad. Nauk SSSR,Ser.Mat. 28 1964, 273–276.MathSciNetGoogle Scholar
  49. 49.
    R. Graham, B. L. Rothschild and J. H. Spencer, Ramsey theory, 2-nd ed., Wiley and Sons, New York, 1990.zbMATHGoogle Scholar
  50. 50.
    J. A. Green and D. Rees, On semigroups in which xr= x, Proc. Cambridge Philos. Soc. 48 1952, 35–40.MathSciNetzbMATHGoogle Scholar
  51. 51.
    R. I. Grigorchuk, Burnside’s problem on periodic groups, Funktsional’nyi Analiz i Ego Prilozheniya 14 1980, 53–54.MathSciNetzbMATHGoogle Scholar
  52. 52.
    V. Guba, The word problem for the relatively free semigroups satisfying T m = T n+n with m ≥ 3, Int. J. Algebra Comput. 3 1993, 335–348.MathSciNetzbMATHGoogle Scholar
  53. 53.
    N. Gupta and S. Sidki, On the Burnside problem for periodic groups, Math.Z. 182 1983, 385–388.MathSciNetzbMATHGoogle Scholar
  54. 54.
    K. Hashiguchi, Notes on finitely generated semigroups and pumping conditions for regular languages, Theoretical Computer Science 46 1986, 53–66.MathSciNetzbMATHGoogle Scholar
  55. 55.
    D. Haussler, Another generalization of Higman’s well quasi order result on Σ* Discrete Mathematics 57 1985, 237–243.MathSciNetzbMATHGoogle Scholar
  56. 56.
    F. C. Hennie, One-tape off line Turing machine computations, Informations and Control 8 1965, 553–578.MathSciNetzbMATHGoogle Scholar
  57. 57.
    G. H. Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. 3 1952, 326–336.MathSciNetzbMATHGoogle Scholar
  58. 58.
    E. Hotzel, On finiteness conditions in semigroups, Journal of Algebra 60 1979, 352–370.MathSciNetzbMATHGoogle Scholar
  59. 59.
    S. V. Ivanov, On the Burnside problem on periodic groups, Bulletin of the American Mathematical Society 27 1992, 257–260.MathSciNetzbMATHGoogle Scholar
  60. 60.
    G. Jacob, La finitude de représentations linéaires des semi-groupes est décidable, J. Algebra 52 1978, 437–459.MathSciNetzbMATHGoogle Scholar
  61. 61.
    N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Publ. vol. 37, 1964.Google Scholar
  62. 62.
    J. Justin, Généralisation du théoreme de van der Waerden sur les semigroupes répétitifs, J.Comb.Theory, Ser. A, 12 1972, 357–367.zbMATHGoogle Scholar
  63. 63.
    J. Justin, Characterization of the repetitive commutative semigroups, J. of Algebra 21 1972, 87–90.MathSciNetzbMATHGoogle Scholar
  64. 64.
    J. Justin, Propriétés combinatoires de partitions finies du demi-groupe libre, in Séminaire d’Informatique Théorique Année 1981–82 (LITP,Univ.Paris), 55–66.Google Scholar
  65. 65.
    J. Justin and G. Pirillo, On a natural extension of Jacob’s ranks, J. of Combinatorial Theory, Ser. A, 43 1986, 205–218.MathSciNetzbMATHGoogle Scholar
  66. 66.
    J. Justin and G. Pirillo, Shirshov’s theorem and w-permutability of semi-groupes, Advances in Mathematics 87 1991, 151–159.MathSciNetzbMATHGoogle Scholar
  67. 67.
    J. Justin and G. Pirillo, A finiteness condition for semigroups generated by a finite set of elements of finite order, PUMA, Ser. A, 1 1990, 45–48.MathSciNetzbMATHGoogle Scholar
  68. 68.
    J. Justin, G. Pirillo and S. Varricchio, Unavoidable regularities and finiteness conditions for semigroups, in “Proc.s of third Italian Conference in Theoretical Computer Science” Mantova 2–4 November 1989, World Scientific, Singapore 1989 350–355.Google Scholar
  69. 69.
    I. Kaplansky, Fields and Rings, 2nd ed. University of Chicago Press, Chicago and London, 1972.zbMATHGoogle Scholar
  70. 70.
    M. Kargapolov and Iou. Merzliakov, Eléments de la théorie des groupes, Editions MIR-Moscou, 1985.Google Scholar
  71. 71.
    J. Karhumaki, On cube-free w-words generated by binary morphisms, Discrete Applied Mathematics 5 1983, 279–297.MathSciNetzbMATHGoogle Scholar
  72. 72.
    O. G. Kharlampovich and M. V. Sapir, Algorithmic Problems in Varieties, Int. J. Algebra Comput. 5 1995, 379–602.MathSciNetzbMATHGoogle Scholar
  73. 73.
    J. Kortelainen, Every commutative quasi-rational language is regular, RA IRO, Informatique Théorique 20 1986, 319–337.MathSciNetzbMATHGoogle Scholar
  74. 74.
    J. Kruskal, The theory of Well-Quasi-ordering: A Frequently Discovered Concept, J. Combin. Theory, Ser. A, 13 1972, 297–305.MathSciNetzbMATHGoogle Scholar
  75. 75.
    G. Lallement, Semigroups and Combinatorial Applications, John Wiley, New York 1979.zbMATHGoogle Scholar
  76. 76.
    M. Latteux and G. Rozenberg, Commutative one-counter Languages are regular, J. Comput. and System Sci. 29 1984, 54–57.MathSciNetzbMATHGoogle Scholar
  77. 77.
    M. Lothaire, Combinatorics on words,Encyclopedia of Mathematics and its Applications, vol.17, Addison-Wesley, 1983.zbMATHGoogle Scholar
  78. 78.
    R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin 1977.zbMATHGoogle Scholar
  79. 79.
    J. McCammond, On the solution of the word problem for the semigroups satisfying T“ = Ta+t with a ≥ 6, Int. J. Algebra Comput. 1 1991, 1–32.MathSciNetzbMATHGoogle Scholar
  80. 80.
    R. McNaughton and S. Papert, Counter-free Automata,MIT Press, Cambrige, MA 1971.zbMATHGoogle Scholar
  81. 81.
    R. McNaughton and Y. Zalcstein, The Burnside problem for semigroups of matrices, J. of Algebra 34 1975, 292–299.MathSciNetzbMATHGoogle Scholar
  82. 82.
    F. Mignosi, Infinite words with linear subword complexity, Theoretical Computer Science 65 1989, 221–242.MathSciNetzbMATHGoogle Scholar
  83. 83.
    M. Morse and G. Hedlund, Unending chess, symbolic dynamics and a problem in semigroups, Duke Math. J. 11 1944, 1–7.MathSciNetzbMATHGoogle Scholar
  84. 84.
    J. Oknhiski, Semigroup Algebras, M. Dekker, New York 1990.Google Scholar
  85. 85.
    P. Perkins, Bases for equational theories of semigroups, J. of Algebra 11 1968, 298–314.MathSciNetzbMATHGoogle Scholar
  86. 86.
    G. Pirillo, On permutation properties for finitely generated semigroups, in: Combinatorics 86, (A. Barlotti, M. Marchi and G Tallini, Eds.), Ann. Discrete Math. 37 North-Holland, Amsterdam 1988, 375–376.Google Scholar
  87. 87.
    G. Pirillo and S. Varricchio, On uniformly repetitive semigroups, Semigroup Forum 49 1994, 125–129.MathSciNetzbMATHGoogle Scholar
  88. 88.
    C. Procesi, The Burnside problem, J. of Algebra 4 1966, 421–425.MathSciNetzbMATHGoogle Scholar
  89. 89.
    A. Restivo, Permutation properties and the Fibonacci semigroup, Semigroup Forum 38 1989, 337–345.MathSciNetzbMATHGoogle Scholar
  90. 90.
    A. Restivo and C. Reutenauer, On the Burnside problem for semigroups, Journal of Algebra 89 1984, 102–104.MathSciNetzbMATHGoogle Scholar
  91. 91.
    A. Restivo and C. Reutenauer, Rational languages and the Burnside problem, Theoretical Computer Science 40 1985, 13–30.MathSciNetzbMATHGoogle Scholar
  92. 92.
    A. Restivo and C. Reutenauer, Some applications of a theorem of Shirshov to Language theory, Information and Control 57 1983, 205–213.MathSciNetzbMATHGoogle Scholar
  93. 93.
    C. Reutenauer, Mots de Lyndon et un theoreme de Shirshov, Ann. Sc. Math. Québec 10 1986, 237–245.MathSciNetzbMATHGoogle Scholar
  94. 94.
    L. Rowen, Polynomial identities in Ring Theory Academic Press 1980.Google Scholar
  95. 95.
    I. Schur, Uber Gruppen periodischer Substitutionen, Sitzungsber. Preuss. Akad.Wiss. 1911, 619–627.zbMATHGoogle Scholar
  96. 96.
    A. I. Shirshov, On certain non associative nil rings and algebraic algebras, Mat. Sb. 41 1957, 381–394.MathSciNetzbMATHGoogle Scholar
  97. 97.
    A. I. Shirshov, On rings with identity relations, Mat. Sb. 43 1957, 277–283.MathSciNetzbMATHGoogle Scholar
  98. 98.
    I. Simon, Notes on noncounting languages of order 2, 1970, manuscriptGoogle Scholar
  99. 99.
    I. Simon, Conditions de finitude pour des semi-groupes, C.R. Acad. Sci. Paris Sér. A, 290 1980, 1081–1082.MathSciNetzbMATHGoogle Scholar
  100. 100.
    I. Simon, Piecewise testable events, in Lecture Notes in Computer Science 33 Springer-Verlag, Berlin 1975, 214–222.Google Scholar
  101. 101.
    H. Straubing, The Burnside problem for semigroups of matrices, in Combinatorics on words,Progress and Perspectives (L. J. Cummings ed.) Academic Press, New York 1983, 279–285.Google Scholar
  102. 102.
    A. Thue, Uber unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl., Christiania 7 1906, 1–22.Google Scholar
  103. 103.
    A. Thue, Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Videnskabsselskabets Skrifter 1, Mat.-Nat. K.1., Christiania 1912.Google Scholar
  104. 104.
    B. L. van der Waerden, Wie der Beweis der Vermutung von Baudet gefunden wurde, Abhandlungen des Mathematischen Seminars der Hanseatischen Universität Hamburg 1965, 6–15, also published as: [How the proof of Baudet’s conjecture was found, Studies in Pure Mathematics, Academic Press, New York 1971, 251–260.]Google Scholar
  105. 105.
    S. Varricchio, A finiteness condition for finitely generated semigroups, Semi-group Forum 38 1989, 331–335.MathSciNetzbMATHGoogle Scholar
  106. 106.
    S. Varricchio, Factorizations of free monoids and unavoidable regularities, Theoretical Computer Science 73 1990, 81–89.MathSciNetzbMATHGoogle Scholar
  107. 107.
    . S. Varricchio, A positive non uniform pumping condition for regular sets, preprint LITP, University of Paris 7, 90.33, SIAM Journal of Computation,to appear. Google Scholar
  108. 108.
    A. I. Zimin, Blocking sets of terms, Matem. Sbornik 119 1982, 363–375.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Aldo de Luca
  • Stefano Varricchio

There are no affiliations available

Personalised recommendations