Advertisement

Languages, Automata, and Logic

  • Wolfgang Thomas

Abstract

The subject of this chapter is the study of formal languages (mostly languages recognizable by finite automata) in the framework of mathematical logic.

Keywords

Regular Language Finite Automaton Acceptance Condition Tree Automaton Game Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AD94]
    R. Alur, D. Dill. A theory of timed automata, Theor. Comput. Sci. 126 (1994), 183–235.MathSciNetzbMATHGoogle Scholar
  2. [AHU74]
    A. V. Aho, J. E. Hoperoft, J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass. 1974.zbMATHGoogle Scholar
  3. [AN92]
    A. Arnold, D. Niwiński, Fixed point characterization of weak monadic logic definable sets of trees, in: Tree Automata and Languages (M. Nivat, A. Podelski, Eds.), Elsevier Science Publishers, Amsterdam 1992, pp. 159–188.Google Scholar
  4. [Ar94a]
    A. Arnold, Finite Transition Systems, Masson, Paris, and Prentice-Hall, Hemel Hempstead 1994.zbMATHGoogle Scholar
  5. [Ar94b]
    A. Arnold, An initial semantics of the μ-calculus on trees and Rabin’s complementation theorem, Theor. Comput. Sci. 148 (1994), 121–132.Google Scholar
  6. [BCST88]
    D. A. M. Barrington, K. J. Compton, H. Straubing, D. Thérien, Regular languages in NC 1,J. Comput. System Sci. 38 (1988), 478–499.Google Scholar
  7. [BHMV94]
    V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 191–238.MathSciNetzbMATHGoogle Scholar
  8. [BK95]
    D. Basin, N. Klarlund, Hardware verification using monadic second-order logic, in: Computer Aided Verification (P. Wolper, Ed.), Lecture Notes in Computer Science 939, Springer-Verlag, Berlin 1995, pp. 31–41.Google Scholar
  9. [BL69]
    J. R. Büchi, L. H. Landweber, Solving sequential conditions by finite-state strategies, Trans. Amer. Math. Soc. 138 (1969), 295–311.MathSciNetGoogle Scholar
  10. [BN95]
    D. Beauquier, D. Niwinski, Automata on infinite trees with counting constraints, Information and Computation 120 (1995), 117–125.MathSciNetzbMATHGoogle Scholar
  11. [BP89]
    D. Beauquier and J.-E. Pin, Factors of words, in: Automata, Languages, and Programming, Proc. 16th ICALP (G. Ausiello et al., Eds.), Lecture Notes in Computer Science 372, Springer-Verlag, Berlin 1989, pp. 63–79.Google Scholar
  12. [BS95]
    F. Blanchet-Sadri, Some logical characterizations of the dot-depth hierarchy and applications, J. Comput. System Sci. 51 (1995), 324–337.MathSciNetzbMATHGoogle Scholar
  13. [Bü60]
    J. R. Büchi, Weak second-order arithmetic and finite automata, Z. Math. Logik Grundl. Math. 6 (1960), 66–92.zbMATHGoogle Scholar
  14. [Bü62]
    J. R. Büchi, On a decision method in restricted second-order arithmetic, in: Proc. 1960 Int. Congr. for Logic, Methodology and Philosophy of Science,Stanford Univ. Press, Stanford, 1962, pp. 1–11.Google Scholar
  15. [Bü64]
    J. R. Büchi, Regular canonical systems, Arch. Math. Logik Grundlagenforschung 6 (1964), 91–111.zbMATHGoogle Scholar
  16. [Bü77]
    J. R. Büchi, Using determinacy to eliminate quantifiers, in: Fundamentals of Computation Theory (M. Karpinski, Ed.), Lecture Notes in Computer Science 56, Springer-Verlag, Berlin 1977, pp. 367–378.Google Scholar
  17. [Bü83]
    J. R. Büchi, State-strategies for games in Fσδ ∩ Gδσ, J. Symb. Logic 48 (1983), 1171–1198.zbMATHGoogle Scholar
  18. [Ca94]
    O. Carton, Chain automata, in: Technology and Applications, Information Processing’94, Vol. I (B. Pherson, I. Simon, Eds.), IFIP, North-Holland, Amsterdam 1994, pp. 451–458.Google Scholar
  19. [Ca96]
    D. Caucal, On infinite transition graphs having a decidable monadic theory, in: Automata, Languages, and Programming, Proc. ICALP’96, (F. Meyer auf der Heide, B. Monien, Eds.), Lecture Notes in Computer Science, 1099, Springer-Verlag, Berlin 1996 pp. 194–205.Google Scholar
  20. [Ch63]
    A. Church, Logic, arithmetic, and automata, Proc. Intern. Congr. Math. 1962, Almqvist and Wiksells, Uppsala 1963, pp. 21–35.Google Scholar
  21. [CG95]
    C. Choffrut, L. Guerra, Logical definability of some rational trace languages, Math. Syst. Theory 28 (1995), 397–420.MathSciNetzbMATHGoogle Scholar
  22. [CGL94]
    E. Clarke, O. Grumberg, D. Long, Verification tools for finite-state concurrent systems, in: A Decade of Concurrency (J. W. de Bakker et al., Eds.), Lecture Notes in Computer Science 803, Springer-Verlag, Berlin 1994, pp. 124–175.Google Scholar
  23. [CPP93]
    J. Cohen, D. Perrin and J. E. Pin, On the expressive power of temporal logic, J. Comput. System Sci. 46 (1993), 271–294.MathSciNetzbMATHGoogle Scholar
  24. [Co90]
    B. Courcelle, The monadic second-order logic of graphs I: recognizable sets of finite graphs Inform. and Comput. 85 (1990), 12–75.MathSciNetzbMATHGoogle Scholar
  25. [Co91]
    B. Courcelle, The monadic second-order theory of graphs V: on closing the gap between definability and recognizability, Theor. Comput. Sci. 80 (1991), 153–202.MathSciNetzbMATHGoogle Scholar
  26. [Co94]
    B. Courcelle, Monadic second-order definable graph transductions: a survey, Theor. Comput. Sci. 126 (1994), 53–75.MathSciNetzbMATHGoogle Scholar
  27. [Co95]
    B. Courcelle, The monadic second-order theory of graphs IX: Machines and their behaviours, Theor. Comput. Sci. 151 (1995), 125–162.MathSciNetzbMATHGoogle Scholar
  28. [Co96]
    B. Courcelle, The expression of graph properties and graph transformations in monadic second-order logic, in: Handbook of Graph Transformations, Vol. I: Foundations (G. Rozenberg, Ed.), World Scientific, Singapore 1996.Google Scholar
  29. [Do70]
    J. Doner, Tree acceptors and some of their applications, J. Comput. System Sci. 4 (1970), 406–451.MathSciNetzbMATHGoogle Scholar
  30. [DR95]
    V. Diekert, G. Rozenberg (Eds.), The Book of Traces, World Scientific, Singapore 1995.Google Scholar
  31. [DT90]
    M. Dauchet, S. Tison, The theory of ground rewrite systems is decidable, Proc. 5th IEEE Symp. on Logic in Computer Science,1990, pp. 242–248.Google Scholar
  32. [EF95]
    H. D. Ebbinghaus, J. Flum, Finite Model Theory,Springer-Verlag, New York 1995.zbMATHGoogle Scholar
  33. [EFT94]
    H. D. Ebbinghaus, J. Flum, W. Thomas, Mathematical Logic (2nd Ed.), Springer-Verlag, New York 1994.zbMATHGoogle Scholar
  34. [EH93]
    J. Engelfriet, H. J. Hoogeboom, X-automata on w-words, Theor. Comput. Sci. 110 (1993), 1–51.MathSciNetzbMATHGoogle Scholar
  35. [EJ88]
    E. A. Emerson, C. S. Jutla, The complexity of tree automata and logics of programs, in: Proc. 29th IEEE Symp. on Foundations of Computer Science, 1988, pp. 328–337.Google Scholar
  36. [EJ91]
    E. A. Emerson, C. S. Jutla, Tree automata, Mu-calculus and determinacy, in: Proc. 32nd IEEE Symp. on Foundations of Computer Science (1991), 368–377.Google Scholar
  37. [EJS93]
    E. A. Emerson, C. S. Jutla, A. P. Sistla, On model checking for fragments of p,-calculus, in: Computer Aided Verification (C. Courcoubetis, Ed.), Lecture Notes in Computer Science 697, Springer-Verlag, Berlin 1993, pp. 385–396.Google Scholar
  38. [E161]
    C. C. Elgot, Decision problems of finite automata design and related arithmetics, Trans. Amer. Math. Soc. 98, (1961), 21–52.MathSciNetGoogle Scholar
  39. [Em90]
    E. A. Emerson, Temporal and modal logic, in: Handbook of Theoretical Computer Science, Vol. B (J. v. Leeuwen, Ed.), Elsevier Science Publishers, Amsterdam 1990, pp. 995–1072.Google Scholar
  40. [Em96]
    E. A. Emerson, Automated temporal reasoning about reactive systems, in: Logics for Concurrency: Structure versus Automata (F. Moller, G. Birtwistle, Eds.), Lecture Notes in Computer Science 1043, Springer-Verlag, Berlin 1996, pp. 41–101.Google Scholar
  41. [EM96]
    W. Ebinger, A. Muscholl, Logical definability on infinite traces, Theor. Comput. Sci. 154 (1996), 67–84.MathSciNetzbMATHGoogle Scholar
  42. [ER66]
    C. C. Elgot, M. O. Rabin, Decidability and undefinability of second (first) order theory of (generalized) successor, J. Symbolic Logic 31 (1966), 169–181.zbMATHGoogle Scholar
  43. [ER93]
    A. Ehrenfeucht, G. Rozenberg, T-structures, T-functions, and texts, Theor. Comput. Sci. 116 (1993), 227–290.MathSciNetzbMATHGoogle Scholar
  44. [EW96]
    K. Etessami, Th. Wilke, An Until hierarchy for temporal logic, in: Proc. 11th IEEE Symp. on Logic in Computer Science, 1996, pp. 108–117.Google Scholar
  45. [Fa74]
    R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in: Complexity of Computation (R. M. Karp, Ed.), SIAM-A MS Proceedings 7 (1974), pp. 43–73.Google Scholar
  46. [FS93]
    C. Frougny, J. Sakarovitch, Synchronized rational relations of finite and infinite words, Theor. Comput. Sci. 108 (1993), 45–82.MathSciNetzbMATHGoogle Scholar
  47. [FSV95]
    R. Fagin, L. J. Stockmeyer, MY. Vardi, On monadic NP vs monadic co-NP, Information and Computation 120 (1995), 78–92.MathSciNetzbMATHGoogle Scholar
  48. [GHR94]
    D. Gabbay, I. Hodkinson, M. Reynolds, Temporal Logic, Vol. 1, Clarendon Press, Oxford 1994.Google Scholar
  49. [GH82]
    Y. Gurevich, L. Harrington, Trees, automata, and games, in: Proc. 14th ACM Symp. on the Theory of Computing,1982, pp. 60–65.Google Scholar
  50. [GRST96]
    D. Giammarresi, A. Restivo, S. Seibert, W. Thomas, Monadic second-order logic over rectangular pictures and recognizability by tiling systems, Information and Computation 125 (1996), 32–45.MathSciNetzbMATHGoogle Scholar
  51. [GS84]
    F. Gécseg, M. Steinby, Tree Automata, Akadémiai Kiodó, Budapest 1984.zbMATHGoogle Scholar
  52. [He96]
    T. A. Henzinger, The theory of hybrid automata, in: Proc. 11th IEEE Symp. on Logic in Computer Science, 1996, 278–292.Google Scholar
  53. [Hf65]
    W. Hanf, Model-theoretic methods in the study of elementary logic, in: The Theory of Models (J. Addison, L. Henkin, P. Suppes, Eds.), North-Holland, Amsterdam 1965, pp. 132–145.Google Scholar
  54. [HP94]
    H. J. Hoogeboom, P. ten Pas, MSO-definable text languages, in: Mathematical Foundations of Computer Science 1994 (I. Prívara et al., Eds.), Lecture Notes in Computer Science 841, Springer-Verlag, Berlin 1994, pp. 413–422.Google Scholar
  55. [HR86]
    H. J. Hoogeboom, G. Rozenberg, Infinitary languages: basic theory and applications to concurrent systems, in: Current Trends in Concurrency (J. de Bakker et al., Eds.), Lecture Notes in Computer Science 224, Springer-Verlag, Berlin 1986, pp. 266–342.Google Scholar
  56. [Im87]
    N Immerman, Languages that capture complexity classes, SIAM J. Comput. 16 (1987), 761–778.MathSciNetGoogle Scholar
  57. [JW95]
    D. Janin, I. Walukiewicz, Automata for the modal p-calculus and related results, in: Math. Found. of Comput. Sci. 1995 (J. Wiedermann, P. Hájek, Eds.), Lecture Notes in Computer Science 969, Springer-Verlag, Berlin 1995, pp. 552–562.Google Scholar
  58. [Kam68]
    J. A. Kamp, Tense logic and the theory of linear order, Ph. D. Thesis, Univ. of California, Los Angeles, 1968.Google Scholar
  59. [KG96]
    O. Kupferman, O. Grumberg, Branching-time temporal logic and tree automata, Information and Computation 125 (1996), 62–69.MathSciNetzbMATHGoogle Scholar
  60. [K194]
    N. Klarlund, Progress measures, immediate determinacy, and a subset construction for tree automata, Ann. Pure Appl. Logic 69 (1994), 243–168.MathSciNetGoogle Scholar
  61. [KMS95]
    N. Klarlund, M. Mukund, M. Sohoni, Determinizing Büchi asynchronous automata, in: Foundations of Software Technology and Theoretical Computer Science (P. S. Thiagarajan, Ed.), Lecture Notes in Computer Science 1026, Springer-Verlag, Berlin 1995, pp. 456–470.Google Scholar
  62. [KPB95]
    S. C. Krishnan, A. Puri, R. K. Brayton, Structural complexity of ω-automata, in: STACS’95 (E. W. Mayr, C. Puech, Eds.), Lecture Notes in Computer Science 900, Springer-Verlag 1995, pp. 143–156.Google Scholar
  63. [KS81]
    T. Kamimura, G. Slutzki, Parallel and two-way automata on directed ordered acyclic graphs, Inform. Contr. 49 (1981), 10–51.MathSciNetzbMATHGoogle Scholar
  64. [Ku94]
    R. P. Kurshan, Computer-Aided Verification of Coordinating Processes, Princeton University Press, Princeton, N. J. 1994.Google Scholar
  65. [La77]
    R. Ladner, Application of model theoretic games to discrete linear orders and finite automata, Information and Control 33 (1977), 281–303.MathSciNetzbMATHGoogle Scholar
  66. [La69]
    L. H. Landweber, Decision problems for ω-automata, Math. Systems Theory 3 (1969), 376–384.MathSciNetzbMATHGoogle Scholar
  67. [LPZ85]
    O. Lichtenstein, A. Pnueli, L. Zuck, The glory of the past, in: Logics of Programs (R. Parikh et al., Eds.), Lecture Notes in Computer Science 193, Springer-Verlag, Berlin 1985, pp. 196–218.Google Scholar
  68. [LST95]
    C. Lautemann, Th. Schwentick, D. Thérien, Logics for context-free languages, in: Computer Science Logic (L. Pacholski, J. Tiuryn, Eds.), Lecture Notes in Computer Science 933, Springer-Verlag, Berlin 1995, pp. 205–216.Google Scholar
  69. [McM93]
    K. McMillan, Symbolic Model Checking,Kluwer, Dordrecht 1993.zbMATHGoogle Scholar
  70. [McN66]
    R. McNaughton, Testing and generating infinite sequences by a finite automaton, Inform. Contr. 9 (1966), 521–530.MathSciNetzbMATHGoogle Scholar
  71. [McN93]
    R. McNaughton, Infinite games played on finite graphs, Ann. Pure Appl. Logic 65 (1993), 149–184.MathSciNetzbMATHGoogle Scholar
  72. [McNP71]
    R. McNaughton and S. Papert, Counter-Free Automata, MIT Press, Cambridge, Mass. 1971.zbMATHGoogle Scholar
  73. [Mi88]
    M. Michel, Complementation is more difficult with automata on infinite words, manuscript, CNET, Paris, 1988.Google Scholar
  74. [Mi90]
    R. Milner, Operational and algebraic semantics of concurrent processes, in: Handbook of Theoretical Computer Science (J. v. Leeuwen, Ed.), Elsevier Science Publ., Amsterdam 1990, pp. 1201–1242.Google Scholar
  75. [Mos80]
    Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam 1980.zbMATHGoogle Scholar
  76. [MP92]
    Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Programs, Springer-Verlag, Berlin, Heidelberg, New York 1992.Google Scholar
  77. [MS85]
    D. E. Muller, P. E. Schupp, The theory of ends, pushdown automata, and second-order logic, Theor. Comput. Sci. 37 (1985), 51–75.MathSciNetzbMATHGoogle Scholar
  78. [MS90]
    D. E. Muller, P. E. Schupp, Alternating automata on infinite trees, Theor.Comput. Sci. 54 (1987), 267–276.MathSciNetzbMATHGoogle Scholar
  79. [MS95]
    D. E. Muller, P. E. Schupp, Simulating alternating tree automata by non-deterministic automata: new results and new proofs of the theorems of Rabin, McNaughton and Safra, Theor. Comput. Sci. 141 (1995), 69–107.MathSciNetzbMATHGoogle Scholar
  80. [Mst84]
    A. W. Mostowski, Regular expressions for infinite trees and a standard form of automata, in: A. Skowron (ed.), Computation Theory, Lecture Notes in Computer Science 208, Springer-Verlag, Berlin 1984, pp. 157–168.Google Scholar
  81. [Mst9la]
    A. W. Mostowski, Games with forbidden positions, Preprint No. 78, Uniwersytet Gdanski, Instytyt Matematyki, 1991.Google Scholar
  82. [Mst9lb]
    A. W. Mostowski, Hierarchies of weak automata and weak monadic formulas, Theor. Comput. Sci. 83 (1991), 323–335.MathSciNetzbMATHGoogle Scholar
  83. [Mu63]
    D. E. Muller, Infinite sequences and finite machines, in: Proc. 4th IEEE Symp. on Switching Circuit Theory and Logical Design,1963, pp. 3–16.Google Scholar
  84. [Mu92]
    A. Muchnik, Games on infinite trees and automata with dead-ends. A new proof for the decidability of the monadic second-order theory of two successors, Bull. of the EATCS 48 (1992), 220–267 (Russian version in Semiotics and Information 24 (1984)).Google Scholar
  85. [MV96]
    C. Michaux, R. Villemaire, Presburger arithmetic and recognizability of natural numbers by automata: new proofs of Cobham’s and Semenov’s theorems, Ann. Pure Appl. Logic 77 (1996), 251–277.MathSciNetzbMATHGoogle Scholar
  86. [Ni88]
    D. Niwinski, Fixed points vs infinite generation, in: Proc. 3rd IEEE Symp. on Logic in Computer Science, 1988, pp. 402–409.Google Scholar
  87. [Ni96]
    D. Niwinski, Fixed points characterization of infinite behaviour of finite state systems, Theor. Comput. Sci. (to appear).Google Scholar
  88. [Pe90]
    D. Perrin, Finite Automata, in: Handbook of Theoretical Computer Science,Vol. B (J. van Leuwen, ed.), Elsevier Science Publishers, Amsterdam 1990, pp. 1–57.Google Scholar
  89. [Pi86]
    J.-E. Pin, Varieties of Formal Languages, Plenum, New-York, 1986.zbMATHGoogle Scholar
  90. [PP86]
    D. Perrin and J.-E. Pin, First-order logic and star-free sets, J. Comput. System Sci. 32 (1986), 393–406.MathSciNetzbMATHGoogle Scholar
  91. [Po95]
    A. Potthoff, First-order logic on finite trees, in: TAPSOFT ’85 (P. D. Mosses et al., Eds.), Lecture Notes in Computer Science, Springer-Verlag, Berlin 1995, pp. 125–139.Google Scholar
  92. [PST94]
    A. Potthoff, S. Seibert, W. Thomas, Nondeterminism versus determinism of finite automata over directed acyclic graphs, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 285–298.MathSciNetzbMATHGoogle Scholar
  93. [PT93]
    A. Potthoff, W. Thomas, Regular tree languages without unary symbols are star-free, in: Fundamentals of of Computation Theory (Z. Esik, Ed.), Lecture Notes in Computer Science 710, Springer-Verlag, Berlin 1993, pp. 396–405.Google Scholar
  94. [Ra69]
    M. O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969), 1–35.MathSciNetzbMATHGoogle Scholar
  95. [Ra70]
    M. O. Rabin, Weakly definable relations and special automata, in: Mathematical Logic and Foundations of Set Theory (Y. Bar-Hillel, Ed.), North-Holland, Amsterdam 1970, pp. 1–23.Google Scholar
  96. [Ra72]
    M. O. Rabin, Automata on infinite objects and Church’s Problem, Amer. Math. Soc., Providence, RI, 1972.Google Scholar
  97. [Sa88]
    S. Safra, On the complexity of ω-automata, in: Proc. 29th IEEE Symp. On Foundations of Computer Science, 1988, pp. 319–327.Google Scholar
  98. [Sa92]
    S. Safra, Exponential determinization for ω-automata with strong-fairness acceptance condition, in: Proc. 24th ACM Symp. on the Theory of Computing, 1992, pp. 275–282.Google Scholar
  99. [SC85]
    A. P. Sistla, E. M. Clarke, The complexity of propositional linear time logics, J. Assoc. Comput. Mach. 32 (1985), 733–749.MathSciNetzbMATHGoogle Scholar
  100. [Sch65]
    M. P. Schützenberger, On finite monoids having only trivial subgroups, Information and Control 8 (1965), 190–194.MathSciNetzbMATHGoogle Scholar
  101. [Se92]
    D. Seese, Interpretability and tree automata: a simple way to solve algorithmic problems on graphs closely related to trees, in: Tree Automata and Languages (M. Nivat, A. Podelski, Eds.), Elsevier Science Publishers, 1992, pp. 83–114.Google Scholar
  102. [Se96]
    D. Seese, Linear time computable problems and first-order descriptions, Math. Struct. in Comp. Sci. 1996.Google Scholar
  103. [Sei92]
    S. Seibert, Quantifier hierarchies over word relations, in: Computer Science Logic (E. Börger et al. Eds.), Lecture Notes in Computer Science 626, Springer-Verlag, Berlin 1992, 329–338.Google Scholar
  104. [Sem84]
    A. L. Semenov, Decidability of monadic theories, in: Proc. MFCS ’84 (M. P. Chytil, V, Koubek, Eds.), Lecture Notes in Computer Science 176, Springer-Verlag, Berlin 1984, pp. 162–175.Google Scholar
  105. [Si75]
    I. Simon, Piecewise testable events, Proc. 2nd GI Conf., Lecture Notes in Computer Science 33, Springer-Verlag, Berlin 1975, pp. 214–222.Google Scholar
  106. [St75]
    J. Stupp, The lattice model is recursive in the original model, manuscript, The Hebrew Univ., Jerusalem 1975.Google Scholar
  107. [St82]
    R. S. Streett, Propositional dynamic logic of looping and converse, Inform. Contr. 54 (1982), 121–141.MathSciNetzbMATHGoogle Scholar
  108. [St87]
    L. Staiger, Research in the theory of ω-languages, J. Inf. Process. Cybern. EIK 23 (1987), 415–439.MathSciNetzbMATHGoogle Scholar
  109. [St94]
    H. Straubing, Finite Automata, Formal Logic, and Circuit Complexity, Birkhäuser, Boston, 1994.zbMATHGoogle Scholar
  110. [St96]
    C. Stirling, Modal and temporal logics for processes, in: Logics for Con-currency: Structure versus Automata (F. Moller, G. Birtwistle, Eds.), Lecture Notes in Computer Science 1043, Springer-Verlag, Berlin 1996, pp. 149–237.Google Scholar
  111. [STT95]
    H. Straubing, D. Thérien and W. Thomas, Regular Languages Defined with Generalized Quantifiers, in: Information and Computation 118 (1995), 289–301.Google Scholar
  112. [SW74]
    L. Staiger, K. Wagner, Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen, Elektron. Informationsverarbeitung u. Kybernetik EIK 10 (1974), 379–392.MathSciNetzbMATHGoogle Scholar
  113. [TB73]
    B. A. Trakhtenbrot, Y. M. Barzdin, Finite Automata, North-Holland, Amsterdam 1973.zbMATHGoogle Scholar
  114. [Th81]
    W. Thomas, A combinatorial approach to the theory of ω-automata, Information and Control 48 (1981), 261–283.MathSciNetzbMATHGoogle Scholar
  115. [Th82a]
    W. Thomas, Classifying regular events in symbolic logic, J. Comput. Syst. Sci. 25 (1982), 360–375.zbMATHGoogle Scholar
  116. [Th82b]
    W. Thomas, A hierarchy of sets of infinite trees, in: Theoretical Computer Science (A. B. Cremers, H. P. Kriegel, Eds.), Lecture Notes in Computer Science 145, Springer-Verlag, Berlin 1982, pp. 335–342.Google Scholar
  117. [Th84a]
    W. Thomas, An application of the Ehrenfeucht—Fraïssé game in formal language theory, Bull. Soc. Math. France, Mem. 16 (1984), 11–21.zbMATHGoogle Scholar
  118. [Th84b]
    W. Thomas, Logical aspects in the study of tree languages, in: Ninth Coll. on Trees in Algebra and Programming (B. Courcelle, Ed.), Cambridge Univ. Press 1984, pp. 31–49.Google Scholar
  119. [Th87]
    W. Thomas, A concatenation game and the dot-depth hierarchy, in: Computation Theory and Logic (E. Börger, Ed.), Lecture Notes in Computer Science 270, Springer-Verlag, Berlin 1987, pp. 415–426.Google Scholar
  120. [Th90]
    W. Thomas, Automata on infinite objects, in: Handbook of Theoretical Computer Science, Vol. B (J. v. Leeuwen, Ed.), Elsevier Science Publishers, Amsterdam 1990, pp. 135–191.Google Scholar
  121. [Th91]
    W. Thomas, On logics, tilings, and automata, in: Automata, Languages, and Programming (J. Leach et al., Eds.), Lecture Notes in Computer Science 510, Springer-Verlag, Berlin 1991, pp. 441–453.Google Scholar
  122. [Th95]
    W. Thomas, On the synthesis of strategies in infinite games, in: STACS’95 (E. W. Mayr, C. Puech, Eds.), Lecture Notes in Computer Science 900, Springer-Verlag, Berlin 1995, pp. 1–13.Google Scholar
  123. [TL94]
    W. Thomas, H. Lescow, Logical specifications of infinite computations, in: A Decade of Concurrency (J. W. de Bakker et al., Eds.), Lecture Notes in Computer Science 803, Springer-Verlag, Berlin 1994, pp. 583–621.Google Scholar
  124. [TW68]
    J. W. Thatcher, J. B. Wright, Generalized finite automata with an application to a decision problem of second order logic, Math. Syst. Theory 2 (1968), 57–82.MathSciNetGoogle Scholar
  125. [TW96]
    D. Thérien, Th. Wilke, Temporal logic and an effective characterization of the until hierarchy, in: Proc. 37th IEEE Symp. on Foundations of Computer Science, 1996, 264–273.Google Scholar
  126. [Va96]
    M. Y. Vardi, An automata-theoretic approach to linear temporal logic, in: Logics for Concurrency: Structure versus Automata (F. Moller, G. Birtwistle, Eds.), Lecture Notes in Computer Science 1043, Springer-Verlag, Berlin 1996, pp. 238–266.Google Scholar
  127. [VW94]
    M. Y. Vardi, P. Wolper, Reasoning about infinite computations, Information and Computation 115 (1994), 1–37.MathSciNetzbMATHGoogle Scholar
  128. [Wa79]
    K. W. Wagner, On ω-regular sets, Inform. Contr. 43 (1979), 123–177.zbMATHGoogle Scholar
  129. [Wa196]
    I. Walukiewicz, Monadic second order logic on tree-like structures, in: STACS’96 (C. Puech, R. Reischuk, Eds.), Lecture Notes in Computer Science 1046, Springer-Verlag, Berlin 1996, pp. 401–414.Google Scholar
  130. [Wi93]
    Th. Wilke, Locally threshold testable languages of infinite words, in: STACS ’83 (P. Enjalbert, A. Finkel, K. W. Wagner, Eds.), Lecture Notes in Computer Science 665, Springer-Verlag, Berlin 1993, pp. 607–616.Google Scholar
  131. [Wi94]
    Th. Wilke, Specifying timed state sequences in powerful decidable logics and timed automata, in: Formal Techniques in Real Time and Fault Tolerant Systems (H. Langmaack et al., Eds.), Lecture Notes in Computer Science 863, Springer-Verlag, Berlin 1994, pp. 694–715.Google Scholar
  132. [WY95]
    Th. Wilke, H. Yoo, Computing the Wadge degree, the Lifschitz degree, and the Rabin index of a regular language of infinite words in polynomial time, in: TAPSOFT’95 (P. D. Mosses et al., Eds.), Lecture Notes in Computer Science 915, Springer-Verlag, Berlin 1995, 288–302.Google Scholar
  133. [YY90]
    A. Yakhnis, V. Yakhnis, Extension of Gurevich-Harrington’s restricted determinacy theorem: A criterion for the winning player and an explicit class of winning strategies, Ann. Pure Appl. Logic 48 (1990), 277–279.MathSciNetzbMATHGoogle Scholar
  134. [Ze94]
    S. Zeitman, Unforgettable forgetful determinacy, J. Logic Computation 4 (1994), 273–283.MathSciNetzbMATHGoogle Scholar
  135. [Zi87]
    W. Zielonka, Notes on finite asynchronous automata, RAIRO Inform. Théor. Appl. 21 (1987), 99–135.MathSciNetzbMATHGoogle Scholar
  136. [Zi95]
    W. Zielonka, Infinite games on finitely coloured graphs with applications to automata on infinite trees, Rep. 1091–95, LaBRI, Univ. de Bordeaux, to appear in Theor. Comput. Sci.. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Wolfgang Thomas

There are no affiliations available

Personalised recommendations