Foaming Properties of Proteins

  • Joseph F. Zayas
Chapter

Abstract

The property of proteins to form stable foams is important in the production of a variety of foods. Foam can be defined as a two-phase system consisting of air cells separated by a thin continuous liquid layer called the lamellar phase. Food foams are usually very complex systems, including a mixture of gases, liquids, solids, and surfactants. The size distribution of air bubbles in foam influences the foam product’s appearance and textural properties; foams with a uniform distribution of small air bubbles imparts body, smoothness, and lightness to the food. Proteins in foams contribute to the uniform distribution of fine air cells in the structure of foods. Body and smoothness of food foams is related to the formation of air bubbles that allow volatilization of flavors with enhanced palatability of the foods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kinsella, J. E. (1981). Functional properties of proteins: possible relationships between structure and function in foams, Food Chem, 7: 273.CrossRefGoogle Scholar
  2. 2.
    Purdon, A. D. (1980). The temperature dependence of surface tension and critical micelle concentration of egg lysolecithin, Colloid Polym. Sci, 258: 1062.CrossRefGoogle Scholar
  3. 3.
    Kitabatake, N. and Doi, E. (1982). Surface tension and foaming of protein solutions, J Food Sci,47: 1218.CrossRefGoogle Scholar
  4. 4.
    Graham, D. and Phillips, M. (1975). Foams (R. J. Ackers, ed.), Academic Press, London, p. 237.Google Scholar
  5. 5.
    MacRitchie, F. (1978). Proteins at interfaces, Adv. Protein Chem, 32: 383.Google Scholar
  6. 6.
    Graham, D. E. and Phillips, M. C. (1980). Proteins at liquid interfaces. I. Kinetics of adsorption and surface denaturation, J. Colloid Interface Sci, 70: 403.CrossRefGoogle Scholar
  7. 7.
    Graham, D. E. and Phillips, M. C. (1979). Proteins at liquid interfaces. III. Molecular structure of adsorbed films, J. Colloid Interface Sci,70: 427.CrossRefGoogle Scholar
  8. 8.
    Cherry, J. P. and McWatters, K. H. (1981). Whippability and aeration, In Protein Functionality in Foods, ACS Symposium Series 147 (J. P. Cherry, ed.), Amer. Chem. Soc., Washington, D. C.CrossRefGoogle Scholar
  9. 9.
    Poole, S., West, S. I., and Walters, C. L. (1984). Protein-protein interactions: their importance in the foaming of heterogeneous protein systems, J. Sci. Food Agric, 35: 701.CrossRefGoogle Scholar
  10. 10.
    Townsend, A. M. and Nakai, S. (1983). Relationships between hydrophobicity and foaming characteristics of food proteins, J. Food Sci, 48: 588.CrossRefGoogle Scholar
  11. 11.
    Kim, S. H. and Kinsella, J. E. (1987). Surface active properties of food proteins: effects of reduction of disulfide bonds on film properties and foam stability of glycinin, J. Food Sci,52: 128.CrossRefGoogle Scholar
  12. 12.
    Hayakawa, S. and Nakai, S. (1985). Relationship of hydrophobicity and net charge to the solubility of milk and soy proteins, J. Food Sci,50: 486.CrossRefGoogle Scholar
  13. 13.
    Kato, A. and Nakai, S. (1980). Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins, Biochem. Biophys. Acta,624: 13.CrossRefGoogle Scholar
  14. 14.
    Kato, A., Tsutsui, N., Matsudomi, N., and Kobayashi, K. (1981). Effects of partial denaturation on surface properties of ovalbumin and lysozyme, Agric. Biol. Chem,45: 2755.CrossRefGoogle Scholar
  15. 15.
    Kato, A., Osako, Y., Matsudomi, N., and Kobayashi, K. (1983). Changes in the emulsifying and foaming properties of proteins during heat denaturation, Agric. Biol. Chem,47: 33.CrossRefGoogle Scholar
  16. 16.
    Kim, S. H. and Kinsella, J. E. (1985). Surface activity of food proteins: Relationships between surface pressure development, viscoelasticity of interfacial films and foam stability of bovine serum albumin, J. Food Sci,50: 1526.CrossRefGoogle Scholar
  17. 17.
    Graham, D. E., Levy, S., and Phillips, M. S. (1976). The conformation of proteins at interfaces and their role in stabilizing emulsions, In Theory and Practice of Emulsion Technology (A. L. Smith, ed.), Academic Press, London, p. 57.Google Scholar
  18. 18.
    Graham, D. E. and Phillips, M. C. (1976). The conformation of proteins at the air-water interface and their role in stabilizing foams, In Foams (R. J. Akers, ed.), Academic Press, New York, p. 131.Google Scholar
  19. 19.
    Bolnedi, V., and Zayas, J. F. (1993). Foaming properties of wheat germ protein flour in comparison to plant and animal proteins in model system. Annual IFT Meeting 1993. Book of Abstracts, p. 160.Google Scholar
  20. 20.
    Baldwin, R. E. (1986). In Egg Science and Technology, 3rd edit. (W. J. Stadelman and O. J. Cotterill, eds.), AVI Publi. Co., Inc., Westport, CT, p. 345.Google Scholar
  21. 21.
    Kinsella, J. E. (1976). Functional properties of proteins in foods: a survey, Crit. Rev. Food Sci. Nutr,7: 219.CrossRefGoogle Scholar
  22. 22.
    Lee, J. C. and Timasheff, S. N. (1981). The stabilization of proteins by sucrose, J. Biol. Chem,256: 7193.Google Scholar
  23. 23.
    Bergquist, D. H. (1986). In Egg Science and Technology,3rd edit. (W. J. Stadelman and O. J. Cotterill, eds.), AVI Publi. Co., Inc., Westport, CT, p. 285.Google Scholar
  24. 24.
    Poole, S., West, S. I., and Fry, J. C. (1986). Lipid tolerant protein foaming systems, Food Hydrocolloids,1: 45.CrossRefGoogle Scholar
  25. 25.
    Kinsella, J. E. and Whitehead, D. M. (1989). Proteins in whey: Chemical, physical, and functional properties, Adv. Food Nutr. Res, 33: 343.CrossRefGoogle Scholar
  26. 26.
    Hailing, P. J. (1981). Protein-stabilized foams and emulsions, CRC Crit. Rev. Food Sci. Nutr,13: 155.Google Scholar
  27. 27.
    Phillips, M. C. (1981). Protein conformation at liquid interfaces and its role in stabilizing emulsions and foams, Food Technol,35: 50.Google Scholar
  28. 28.
    Elizalde, B. E., Giaccaglia, D., Pilosof, A. M. R., and Bartholomai, G. B. (1991). Kinetics of liquid drainage from protein-stabilized foams, J. Food Sci,56: 24.CrossRefGoogle Scholar
  29. 29.
    Phillips, L. G., Hague, Z., and Kinsella, J. E. (1987). A method for the measurement of foam formation and stability, J. Food Sci,52: 1074.CrossRefGoogle Scholar
  30. 30.
    Kosaric, N. and Ng, D. C. M. (1983). Some functional properties of milk protein calcium co-precipitates, Can. Inst. Food Sci. Technol. J, 16 (2): 141.Google Scholar
  31. 31.
    Mangino, M. E., Huffman, L. M., and Regester, G. O. (1988). Changes in the hydrophobicity and functionality of whey during the processing of whey protein concentrate, J. Food Sci,53: 1684.CrossRefGoogle Scholar
  32. 32.
    To, B., Helbio, N. B., Nakai, S., and Ma, C. Y. (1985). Can. Inst. Food Sci. Technol. J, 18 (2): 150.Google Scholar
  33. 33.
    Slack, A. W., Amundson, C. H., and Hill, Jr., C. G. (1986). Foaming and emulsifying characteristics of fractionated whey protein, J Food Proc. Pres, 10: 81.CrossRefGoogle Scholar
  34. 34.
    Morr, C. V. and Foegeding, E. A. (1990). Composition and functionality of commercial whey and milk protein concentrates and isolates: A status report, Food Technol, 4: 100.Google Scholar
  35. 35.
    Burgess, K. J. and Kelly, J. (1979). Technical note: selected functional properties of a whey protein isolate, J Food Technol, 14: 325.CrossRefGoogle Scholar
  36. 36.
    Liao, S. and Mangino, M. (1987). Characterization of the compositional, physiochemical and functional properties of acid whey protein concentrates, J Food Sci, 52: 1033.CrossRefGoogle Scholar
  37. 37.
    De Wit, J. N. (1989). Functional properties of whey proteins, In Developments in Dairy Chemistry v., 4, Functional milk proteins, Elsevier Appl. Sci., London, New York, p. 285.Google Scholar
  38. 38.
    Waniska, R. D. and Kinsella, J. E. (1985). Surface properties of ß-lactoglobulin: Adsorption and rearrangement during film formation, J Agric. Food Chem, 33: 1143.CrossRefGoogle Scholar
  39. 39.
    Jackman, R. L. and Yada, R. Y. (1988). Functional properties of whey-potato protein composite blends in a model system, J. Food Sci, 53: 1427.CrossRefGoogle Scholar
  40. 40.
    Britten, M. and Lavoie, L. (1992). Foaming properties of proteins as affected by concentration, J Food Sci,57: 1219.CrossRefGoogle Scholar
  41. 41.
    Tornberg, E., Granfeldt, Y., and Hakansson, C. (1982). A comparison of the interfacial behavior of three food proteins adsorbed at air-water and oil-water interfaces, J Sci. Food Agric, 33: 904.CrossRefGoogle Scholar
  42. 42.
    Murphy, J. M. and Fox, P. F. (1990). Functional properties of as-/K-caseinate-or [3-rich casein fractions, Food Chem,39: 211.CrossRefGoogle Scholar
  43. 43.
    Lee, S. Y., Morr, C. V., and Ha, E. Y. W. (1992). Structural and functional properties of caseinate and whey protein isolate as affected by temperature and pH. J Food Sci,57: 1210.CrossRefGoogle Scholar
  44. 44.
    Phillips, L. G., Davis, M. J., and Kinsella, J. E. (1989). The effects of various milk proteins on the foaming properties of egg white, Food Hydrocolloids, 3: 163.CrossRefGoogle Scholar
  45. 45.
    Fox, P. F. (1989). The milk protein system, In Developments in Dairy Chemistry - 4 (P. F. Fox, ed.), Elsevier Applied Science, New York.Google Scholar
  46. 46.
    Tornberg, E. (1978). The interfacial behavior of three food proteins studied by the drop volume technique, J Sci. Food Agric, 29: 762.CrossRefGoogle Scholar
  47. 47.
    Patel, M. T. and Kilara, A. (1990). Studies on whey protein concentrates. 2. Foaming and emulsifying properties and their relationships with physicochemical properties, J Dairy Sci, 73 (10): 2731.CrossRefGoogle Scholar
  48. 48.
    Harper, W. J. (1984). Model food system approaches for evaluating whey protein functionality, J Dairy Sci, 67: 2745.CrossRefGoogle Scholar
  49. 49.
    Peltonen-Shalaby, R. and Mangino, M. E. (1986). Compositional factors that affect the emulsifying and foaming properties of whey protein concentrates, J Food Sci, 51: 91.CrossRefGoogle Scholar
  50. 50.
    Schmidt, D. G. and Van Hooydonk, A. C. M. (1980). A scanning electron microscopical investigation of the whipping of cream, Scanning Electron Microsc, 111: 653.Google Scholar
  51. 51.
    Morr, C. V. (1985). Composition, physicochemical and functional properties of reference whey protein concentrate, J Food Sci,50: 1406.CrossRefGoogle Scholar
  52. 52.
    Phillips, L. G., Yang, S. T., Schulman, W., and Kinsella, J. E. (1989). Effects of lysozyme, clupeine, and sucrose on the foaming properties of whey protein isolate and ßlactoglobulin, J Food Sci, 54: 743.CrossRefGoogle Scholar
  53. 53.
    Phillips, L. G., Schulman, W., and Kinsella, J. E. (1990). pH and heat treatment effects on foaming of whey protein isolate, J. Food Sci,55: 1116.Google Scholar
  54. 54.
    Le Meste, M. L., Colas, B., Simatos, D., Closs, B., Courthaudon, J. L., and Lorient, D. (1990). Contribution of protein flexibility to the foaming properties of casein, J Food Sci, 55: 1445.CrossRefGoogle Scholar
  55. 55.
    Poole, S., West, S. I., and Fry, J. C. (1987). Charge structural requirements of basic proteins for foam enhancement, Food Hydrocolloids,1: 227.CrossRefGoogle Scholar
  56. 56.
    Hsu, K. H. and Fennema, O. (1989). Changes in the functionality of dry whey protein concentrate during storage, J Dairy Sci, 72: 829.CrossRefGoogle Scholar
  57. 57.
    Morr, C. V. (1987). Effect of HTST pasteurization of milk, cheese whey and cheese whey OF retentate upon the composition, physicochemcial and functional properties of whey protein concentrates, J. Food Sci, 52: 312.CrossRefGoogle Scholar
  58. 58.
    Akita, E. M. and Nakai, S. (1990). Lipophilization of ß-lactoglobulin: Effect on hydrophobicity, conformation and surface functional properties, J. Food Sci, 55: 711.CrossRefGoogle Scholar
  59. 59.
    Hague, Z. and Kito, M. (1983). Lipophilization of asp-casein. 2. Conformational and functional effects, J. Agric. Food chem, 31: 1231.CrossRefGoogle Scholar
  60. 60.
    Johnson, T. M. and Zabik, M. E. (1981). Response surface methodology for analysis of protein interactions in angel food cakes, J Food Sci, 46: 1226.CrossRefGoogle Scholar
  61. 61.
    Kitabatake, N. and Doi, E. (1987). Conformational change of hen egg ovalbumin during foam formation detected by 5,5’-dithiobis (2-nitrobenzoic acid), J. Agric. Food Chem, 35: 953.CrossRefGoogle Scholar
  62. 62.
    Johnson, T. M. and Zabik, M. E. (1981). Egg albumen protein interactions in an angel food cake system, J. Food Sci, 46: 1231.CrossRefGoogle Scholar
  63. 63.
    Johnson, T. M. and Zabik, M. E. (1981). Ultrastructural examination of egg albumen protein foams, J. Food Sci, 46: 1237.CrossRefGoogle Scholar
  64. 64.
    Poole, S., West, S. I., and Walters, C. L. (1984). Protein-protein interactions: Their importance in the foaming of heterogeneous protein systems, J. Sci. Food Agric, 35: 701.CrossRefGoogle Scholar
  65. 65.
    Tsutsui, T. (1988). Functional properties of heat-treated egg yolk low density lipoprotein, J Food Sci, 53: 1103.CrossRefGoogle Scholar
  66. 66.
    Dyer-Hyrdon, J. N., and Nnanna, I. A. (1993). Cholesterol content and functionality of plasma and granules fractionated from egg yolk. J. Food Sci, 58: 1277.CrossRefGoogle Scholar
  67. 67.
    Wootton, M., Hong, N. T., and Pham Thi, H. L. (1981). A study of the denaturation of egg white proteins during freezing using differential scanning calorimetry, J Food Sci, 46: 1336.CrossRefGoogle Scholar
  68. 68.
    Ma, C. Y., Harwalkar, V. R., Poste, L. M., and Sahasrabudhe, M. R. (1993). Effect of gamma irradiation on the physicochemical and functional properties of frozen liquid egg products. Food Research Internat, 26: 247.CrossRefGoogle Scholar
  69. 69.
    Freeland-Graves, J. H. and Peckham, G. C. (1979). Foundations of Food Preparation, 30: 264.Google Scholar
  70. 70.
    Van Elswyk, M. E., Sams, A. R., and Hargis, P. S. (1992). Composition, functionality, and sensory evaluation of eggs from hens fed dietary menhaden oil, J Food Sci,, 57: 342.CrossRefGoogle Scholar
  71. 71.
    Shahidi, F., Naczk, M., Rubin, L. J., and Diosady, L. L. (1984). Functional properties of blood globin, J Food Sci, 49: 370.CrossRefGoogle Scholar
  72. 72.
    Etheridge, P. A., Hickson, D. W., Young, C. R., Landmann, W. A., and Dill, C. W. (1981). Functional and chemical characteristics of bovine plasma proteins isolated as a metaphosphate complex, J Food Sci, 46: 1782.CrossRefGoogle Scholar
  73. 73.
    Watanabe, M., Shimada, A, Yazawa, E., Kato, T., and Arai, S., (1981). Proteinaceous surfactants produced from gelatin by enzymatic modification: application to preparation of food items, J. Food Sci, 46: 1738.CrossRefGoogle Scholar
  74. 74.
    Kim, S. H. and Kinsella, J. E. (1986). Effects of reduction with dithiothreitol on the molecular properties of soy glycinin, J Agric. Food Chem, 34: 623.CrossRefGoogle Scholar
  75. 75.
    Horiuchi, T., Fukushima, D., Sugimato, M., and Hattori, T. (1978). Studies on enzyme-modified proteins as foaming agents: effect of structure on foam stability. Food Chem, 3: 35.CrossRefGoogle Scholar
  76. 76.
    Manak, L. J., Lawhon, J. T., and Lusas, E. W. (1980). Functioning potential of soy, cottonseed, and peanut protein isolates produced by industrial membrane systems, J. Food Sci, 45: 236.CrossRefGoogle Scholar
  77. 77.
    Schaffner, D. W. and Beuchat, L. R. (1986). Functional properties of freeze-dried powders of unfermented and fermented aqueous extracts of legume seeds, J Food Sci, 51: 629.CrossRefGoogle Scholar
  78. 78.
    Paulson, A. T., Tung, M. A., Garland, M. R., and Nakai, S. (1984). Functionality of modified plant proteins in model food systems, Can. Inst. Food Sci. Technol. 1, 17 (4): 202.Google Scholar
  79. 79.
    Hague, Z., Matoba, T., and Kito, M. (1982). Incorporation of fatty acid into food protein: palmitoyl soybean glycinin, J. Agric. Food Chem, 30: 481.CrossRefGoogle Scholar
  80. 80.
    Sung, H. Y., Chen, H. J., Liu, T. Y., and Su, J. C. (1983). Improvement of the functionality of soy protein by introduction of new thiol groups through a papaincatalyzed acylation, J. Food Sci, 48: 708.CrossRefGoogle Scholar
  81. 81.
    Kim, S. H. and Kinsella, J. E. (1987). Surface active properties of proteins: Effects of progressive succinylation on film properties and foam stability of glycinin, J. Food Sci, 52: 1341.CrossRefGoogle Scholar
  82. 82.
    Chen, B. H. Y. and Morr, C. V. (1985). Solubility and foaming properties of phytatereduced soy protein isolate, J. Food Sci, 50: 1139.CrossRefGoogle Scholar
  83. 83.
    McWatters, K. H., Cherry, J. P., and Holmes, M. R. (1976). Influence of suspension medium and pH on functional and protein properties of defatted peanut meal, J. Agric. Food Chem, 24 (3): 517.CrossRefGoogle Scholar
  84. 84.
    Kim, N. S., Kim Y. J., and Nam, Y. J. (1992). Characteristics and functional properties of protein isolates from various peanut (Arachis hypogaea L.) cultivars, J. Food Sci, 57: 406.CrossRefGoogle Scholar
  85. 85.
    MOnteiro, P. V., and Prakash, V. (1994). Functional properties of homogeneous protein fractions from peanut(Arachis hypogaea L.). J Agric. Food Chem, 42: 274.CrossRefGoogle Scholar
  86. 86.
    Kohnhorst, A. L., Smith, D. M., Uebersax, M. A., and Bennink, M. R. (1990). Compositional, nutritional and functional properties of meals, flours and concentrates from navy and kidney beans (Phaseolus vulgaris), J. Food Quality, 13: 435.CrossRefGoogle Scholar
  87. 87.
    Idouraine, A., Yensen, S. B., and Weber, C. W. (1991). Tepary bean flour, albumin and globulin fractions functional properties compared with soy protein isolate, J. Food Sci, 56: 1316.CrossRefGoogle Scholar
  88. 88.
    Sathe, S. K., Deshpande, S. S., and Salunkhe, D. K. (1983). Functional properties of black gram (Phaseolus Mungo L.) proteins, Lebensm.-Wiss. u.-Technol, 16: 69.Google Scholar
  89. 89.
    Sosulski, F. W. and McCurdy, A. R. (1987). Functionality of flours, protein fractions and isolates from field peas and faba bean, J. Food Sci, 52: 1010.CrossRefGoogle Scholar
  90. 90.
    Han, J. Y. and Khan, K. (1990). Functional properties of pin-milled and air-classified dry edible bean fractions, Cereal Chem, 67 (4): 390.Google Scholar
  91. 91.
    Narayana, K. and Narasinga Rao, M. S. (1984). Effect of acetylation and succinylation on the functional properties of winged bean (Psophocarpus tetragonolobus) flour, J. Food Sci, 49: 547.CrossRefGoogle Scholar
  92. 92.
    Nath, J. P. and Narasinga Rao, M. S. (1981). Functional properties of guar proteins, J. Food Sci, 46: 1255.CrossRefGoogle Scholar
  93. 93.
    Tasneem, R. and Subramanian, N. (1986). Functional properties of guar (Cyamopsis tetragonoloba) meal protein isolates, J. Agric. Food Chem, 34: 850.CrossRefGoogle Scholar
  94. 94.
    Tasneem, R., Ramamani, S., and Subramanian, N. (1982). Functional properties of guar seed (Cyamopsis tetragonoloba) meal detoxified by different methods, J. Food Sci, 47: 1323.CrossRefGoogle Scholar
  95. 95.
    Swanson, B. G. (1990). Pea and lentil protein extraction and functionality, J.A.O.C.S, 67 (50): 276.Google Scholar
  96. 96.
    Koyoro, H. and Powers, J. R. (1987). Functional properties of pea globulin fractions, Cereal Chem, 64 (2): 97.Google Scholar
  97. 97.
    Sumner, A. K., Nielsen, M. A., and Youngs, C. G. (1981). Production and evaluation of pea protein isolate, J. Food Sci, 46: 346.CrossRefGoogle Scholar
  98. 98.
    Canella, M., Castriotta, G., Bernardi, A., and Boni, R. (1985). Functional properties of individual sunflower albumin and globulin, Lebensm.-Wiss. u.-Technol, 18: 288.Google Scholar
  99. 99.
    Rossi, M. and Germondari, I. (1982). Production of a food-grade protein meal from defatted sunflower. II. Functional properties evaluation, Lebensm.-Wiss. u.-Technol, 15: 313.Google Scholar
  100. 100.
    Canella, M. (1978). Whipping properties of sunflower protein dispersions, Lebensm.Wiss. u.-Technol, 11: 259.Google Scholar
  101. 101.
    Canella, M., Bernardi, A., Castriotta, G., and Russomanno, G. (1984). Functional properties of fermented sunflower meal, Lebensm.-Wiss. u.-Technol, 17: 146.Google Scholar
  102. 102.
    Kabirullah, M. and Wills, R. B. H. (1981). Functional properties of sunflower protein following partial hydrolysis with proteases, Lebensm.-Wiss. u.-Technol, 14: 232.Google Scholar
  103. 103.
    Kabirullah, M. and Wills, R. B. H. (1982). Functional properties of acetylated and succinylated sunflower protein isolate, J. Food Technol, 17: 235.CrossRefGoogle Scholar
  104. 104.
    Bera, M. and Mukherjee, R. K. (1989). Solubility, emulsifying and foaming properties of rice bran protein concentrte, J. Food Sci, 54: 142.CrossRefGoogle Scholar
  105. 105.
    Dev, D. K. and Mukherjee, R. K. (1986). Functional properties of rapeseed protein products with varying phytic acid contents, J. Agric. Food Chem, 34: 775.CrossRefGoogle Scholar
  106. 106.
    Kinsella, J. E. (1981). Functional properties of proteins: possible relationships between structure and function in foams, Food Chem, 7: 273.CrossRefGoogle Scholar
  107. 107.
    Thompson, L. U., Liu, R. F. K., and Jones, J. D. (1982). Functional properties and food applications of rapeseed protein concentrate, J Food Sci, 47: 1175.CrossRefGoogle Scholar
  108. 108.
    Berardi, L. C. and Cherry, J. P. (1981). Functional properties of co-precipitated protein isolates from cottonseed, soybean and peanut flours, Can. Inst. Food Sci. Technol J, 14 (4): 283.Google Scholar
  109. 109.
    Rahma, E. H. and Narasinga Rao, M. S. (1983). Effect of limited proteolysis on the functional properties of cottonseed flour, J. Agric. Food Chem, 31: 356.CrossRefGoogle Scholar
  110. 110.
    Ma, C. Y. and Harwalkar, V. R. (1984). Chemical characterization and functionality assessment of oat protein fraction, J. Agric. Food Chem, 32 (1): 144.CrossRefGoogle Scholar
  111. 111.
    Ma, C. Y. (1983) Preparation, composition and functional properties of oat protein isolates, Can. Inst. Food Sci. Technol. J, 16 (3): 201.Google Scholar
  112. 112.
    Ma, C. Y. (1983). Chemical characterization and functionality assessment of protein concentrates from oats, Cereal Chem, 60 (1): 36.Google Scholar
  113. 113.
    Oomah, B. D. and Mathieu, J. J. (1987). Functional properties of commercially produced wheat flour solubles, Can. Inst. Food Sci. Technol. J, 20 (2): 81.Google Scholar
  114. 114.
    Wilde, P. J., Clark, D. C., and Marion, D. (1983). Influence of competitive adsorption of a lysopalmitoylphosphatidylcholine on the functional properties of puroindoline, a lipid-binding protein isolated from wheat flour. J. Agric Food Chem, 41:1570CrossRefGoogle Scholar
  115. 115.
    Betschart, A. A., Fong, R. Y., and Hanamoto, M. M. (1979). Safflower protein isolates: functional properties in simple systems and breads, J. Food Sci, 44: 1022.CrossRefGoogle Scholar
  116. 116.
    Paredes-Lopez, O. and Ordorica-Falomir, C. (1986). Functional properties of safflower protein isolates: water absorption, whipping and emulsifying characteristics, J. Sci. Food Agric, 37: 1104.CrossRefGoogle Scholar
  117. 117.
    Madhusudhan, K. T. and Singh, N. (1985). Effect of heat treatment on the functional properties of linseed meal, J. Agric. Food Chem, 33: 1222.CrossRefGoogle Scholar
  118. 118.
    Knorr, D. (1980). Functional properties of potato protein concentrates, Lebensm.-Wiss. u.-Technol, 13: 297.Google Scholar
  119. 119.
    Wojnowska, I., Poznanski, S., and Bednarski, W. (1981). Processing of potato protein concentrates and their properties, J Food Sci, 47: 167.CrossRefGoogle Scholar
  120. 120.
    Wiseman, M. O. and Price, R. L. (1987). Functional properties of protein concentrates from pressed jojoba meal, Cereal Chem, 64 (2): 94.Google Scholar
  121. 121.
    Knuckles, B. E. and Kohler, G. O. (1982). Functional properties of edible protein concentrates from alfalfa, J. Agric. Food Chem, 30 (4): 748.CrossRefGoogle Scholar
  122. 122.
    Devi, M. A. and Venkataraman, L. V. (1984). Functional properties of protein products of mass cultivated blue-green algae Spirulina platensis, J. Food Sci, 49: 24.CrossRefGoogle Scholar
  123. 123.
    Huang, Y. T. and Kinsella, J. E. (1987). Effects of phosphorylation on emulsifying and foaming properties and digestibility of yeast protein, J Food Sci, 52: 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Joseph F. Zayas
    • 1
  1. 1.Dept. of Foods and NutritionKansas State UniversityUSA

Personalised recommendations