Two-Mode Overlapping Clustering With Applications to Simultaneous Benefit Segmentation and Market Structuring

  • Daniel Baier
  • Wolfgang Gaul
  • Martin Schader
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


A new two-mode overlapping clustering procedure is presented. This procedure includes solution possibilities for two-mode (non-)overlapping additive clustering as well as (non-)overlapping clusterwise regression with conjoint experiments and can be used for simultaneous benefit segmentation and market structuring. Applications of various cases of the new procedure to conjoint data are used for comparisons.


Market Structure Customer Segment Additive Cluster Mode Cluster Return Option 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AKAIKE, H. (1977): On Entropy Maximization Principle. In P. R. Krishnaiah (ed.): Applications of Statistics. North Holland, Amsterdam, 27–41.Google Scholar
  2. ARABIE, P. and CARROLL, J. D. (1980): MAPCLUS: A Mathematical Programming Approach to Fitting the ADCLUS Model. Psychometrika, 45, 211–235.CrossRefGoogle Scholar
  3. ARABIE, P.; CARROLL, J. D.; DESARBO, W. S. and WIND, J. (1981): Overlapping Clustering: A New Method for Product Positioning. Journal of Marketing Research, 18, 310–317.CrossRefGoogle Scholar
  4. BAIER, D. and GAUL, W. (1995): Classification and Representation Using Conjoint Data. In: W. GAUL, M. SCHADER (eds.): From Data to Knowledge. Springer, Berlin, 298–307.Google Scholar
  5. BAIER, D. and GAUL, W. (1996): Analyzing Paired Comparisons Data Using Probabilistic Ideal Point and Vector Models. In: H.-H. BOCK, W. POLASEK (eds.): Data Analysis and Information Systems. Springer, Berlin, 163–174.CrossRefGoogle Scholar
  6. BAUER, H. H. (1989): Marktabgrenzung. Duncker & Humblot, Berlin.Google Scholar
  7. BOTH, M. and GAUL, W. (1987): Ein Vergleich zweimodaler Clusteranalyseverfahren. Methods of Operations Research, 57, 593–605.Google Scholar
  8. BOZDOGAN, H. (1987): Model Selection and Akaike’s Information Criterion: The General Theory and Its Analytical Extensions. Psychometrika, 52, 345–370.CrossRefGoogle Scholar
  9. CARROLL, j. D. and ARABIE, P. (1983): An Individual Differences Generalization of the ADCLUS Model and the MAPCLUS Algorithm. Psychometrika, 48, 157–169.CrossRefGoogle Scholar
  10. CHATURVEDI, A and CARROLL, J. D. (1994): An Alternating Combinatorial Optimization Approach to Fitting the INDCLUS and Generalized INDCLUS Models. Journal of Classification, 11, 155–170.CrossRefGoogle Scholar
  11. CHATURVEDI, A.; CARROLL, J. D. and GREEN, P. E. (1994): A Feature Based Approach to Market Segmentation via Overlapping k-Centroids Clustering. Discussion Paper, Wharton School, University of Pennsylvania.Google Scholar
  12. DAY, G.S., SHOCKER, A.D., and SRIVASTAVA, R.K. (1979): Customer-Oriented Approaches to Identifying Product-Markets. Journal of Marketing, 43, 8–19.CrossRefGoogle Scholar
  13. DESARBO, W. S. (1982): GENNCLUS: New Models for General Nonhierarchical Clustering Analysis. Psychometrika, 47, 449–475.CrossRefGoogle Scholar
  14. GAUL, W. and SCHADER, M. (1994): Pyramidal Classification Based on Incomplete Dissimilarity Data. Journal of Classification, 11, 171–193.CrossRefGoogle Scholar
  15. GAUL, W and SCHADER, M. (1996): A New Algorithm for Two-Mode Clustering. In: H.-H. BOCK, W. POLASEK (eds.): Data Analysis and Information Systems. Springer, Berlin, to appear.Google Scholar
  16. HRUSCHKA, H. (1986): Market Definition and Segmentation Using Fuzzy Clustering Methods. International Journal of Research in Marketing, 3, 117–134.CrossRefGoogle Scholar
  17. OPITZ, O. and BAUSCH, T. (1986): Nichtdisjunkte Klassifikation mit qualitativen Daten. Studien zur Klassifikation, 17, 211–220.Google Scholar
  18. SHEPARD, R. K. and ARABIE, P. (1979): Additive Clustering Representation of Similarities as Combinations of Discrete Overlapping Properties. Psychological Review, 86, 87–123.CrossRefGoogle Scholar
  19. SRIVASTAVA, R. K. and ALPERT, M. I., and SHOCKER, A.D. (1984): A Customer-Oriented Approach for Determining Market Structures. Journal of Marketing, 48, 32–45.CrossRefGoogle Scholar
  20. WEDEL, M. and STEENKAMP, J. B. (1991): A Clusterwise Regression Method for Simultaneous Fuzzy Market Structuring and Benefit Segmentation, Journal of Marketing Research, 28, 385–396.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Daniel Baier
    • 1
  • Wolfgang Gaul
    • 1
  • Martin Schader
    • 2
  1. 1.Institut für Entscheidungstheorie und UnternehmensforschungUniversität Karlsruhe (TH), Kollegium am SchloßKarlsruheGermany
  2. 2.Lehrstuhl für Wirtschaftsinformatik IIIUniversität Mannheim, SchloßMannheimGermany

Personalised recommendations