Ecology of Mediterranean Evergreen Oak Forests pp 135-147

Part of the Ecological Studies book series (ECOLSTUD, volume 137) | Cite as

Gas Exchange and Water Relations

  • Robert Savé
  • Carles Castell
  • Jaume Terradas

Abstract

Mediterranean environments are often characterized by a double stress: summer drought and winter cold (Mitrakos 1980; Miller 1981; Terradas and Savé 1992). Summer drought results from the coincidence of low summer precipitation with high temperature, high irradiance, and high water vapour pressure deficit (Di Castri and Mooney 1973); it has been traditionally recognized as the main climate constraint characterizing Mediterranean-type ecosystems. However, some degree of stress can be also due to winter cold, which may be determinant in montane and/or continental sites. This is reflected in the seasonal patterns of plant activity. Photosynthetic activity is typically relatively high in spring, decreases strongly in summer due to drought (Oechel et al. 1981, Tenhunen et al. 1990), increases again after the first autumn rains, and decreases or ceases during the winter months. Plant growth and leaf transpiration may follow similar patterns.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acherar M, Rambal S (1992) Comparative water relations of four Mediterranean oak species. Vegetatio 99/100:177–184CrossRefGoogle Scholar
  2. Aussenac G, Vallette JC (1982) Comportement hydrique estival de Cedrus arlantica Manettl,Quercus ilex L. et Quercus pubescens Will. et de divers pins dans le Mont Ventoux. Ann Sci For 39:41–62CrossRefGoogle Scholar
  3. Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF (1987) Allocating resources to reproduction and defense. BioScience 37:58–67CrossRefGoogle Scholar
  4. Berger A, Eckardt FE, Méthy M, Heim G, Sauvezon R (1977) Interception de l’énergie rayonnante, échange de CO2, régime hydrique et production chez différents types de végétation sous climat méditerranéen. In: Moyse A (ed) Les processus de la production végétale primaire. Gauthier Villars, Paris, pp 1–15Google Scholar
  5. Burriel JA, Calvet S, Sala A, Gracia CA (1993) Ángulo foliar en Quercus ilex modulación por el ambiente, y contribución a la economía hídrica de la planta. In: Silva FJ, Vega G (eds) Congr Forestal Español, Ponencias y Comunicaciones, vol 1. Xunta de Galicia, Louriz¨¢n, Pontevedra, pp 225–232Google Scholar
  6. Castell C, Terradas J, Tenhunen JD (1994) Water relations, gas exchange, and growth of resprouts and mature plant shoots of Arbutus unedo L. and Quercus ilex L. Oecologia 98:201–211CrossRefGoogle Scholar
  7. Comfín M P, Escarré A, Gracia CA, Lledó MJ, Rabella, R, Savé R, Terradas J (1987) Water use by Quercus ilex L. in forests near Barcelona, Spain. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress: functional analysis in Mediterranean ecosystems. Springer, Berlin, pp 259–266Google Scholar
  8. Correia MJ, Chaves MMC, Pereira JS (1990) Afternoon depression in photosynthesis in grapevine leaves. Evidence for a high light stress effect. J Exp Bot 41:417–426CrossRefGoogle Scholar
  9. Di Castri F, Mooney HA (eds) (1973) Mediterranean-type ecosystems. Springer, New YorkGoogle Scholar
  10. Espelta JM (1996) La regeneració de boscos d’;alzina (Quercus ilex L.) i pi blanc (Pinus halepensis Mill.): estudi experimental de la resposta de les plàntules a la intensitat de llum i a la disponibilitat d’aigua. PhD Thesis, Autonomous University of Barcelona, BellaterraGoogle Scholar
  11. Fleck I, Grau D, Sanjosé M, Vidal D (1996) Carbon isotope discrimination in Quercus ilex resprouts after fire and tree fell. Oecologia 105:286–292CrossRefGoogle Scholar
  12. Gartner BL (1995) Patterns of xylem variation within a tree and their hydraulic and mechanical consequences. In: Gartner BL (ed) Plant stems. Physiology and functional morphology. Academic Press, San Diego, pp 125–149Google Scholar
  13. Ilijanic L, Gracanin M (1972) Zum Wasserhaushalt einiger mediterraner Pflanzen. Ber Dtsch Bot Ges 85:329–339Google Scholar
  14. Kyriakopoulos E, Larcher W (1976) Saugspannungsdiagramm fur austrocknende Blater von Quercus ilex L. Z Pflanzenphysiol 77:268–271Google Scholar
  15. Kyriakopoulos E, Richter H (1977) A comparison of methods for the determination of water status in Quercus ilex L. Z Pflanzenphysiol 82:14–27Google Scholar
  16. Kyriakopoulos E, Richter H (1991) Desiccation tolerance and osmotic parameters in detached leaves of Quercus ilex Acta Oecol 12:357–367Google Scholar
  17. Larcher W (1960) Transpiration and photosynthesis of detached leaves and shoots of Quercus pubescens and Quercus ilex during desiccation under standard conditions. Bull Res Counc Isr 8D:213–224Google Scholar
  18. Larcher W (1980) Physiological plant ecology. Springer, BerlinCrossRefGoogle Scholar
  19. Larcher W (1981) Low temperature effects on Mediterranean sclerophylls: an unconventional viewpoint. In: Margaris NS, Mooney HA (eds) Components of productivity of Mediterranean-climate regions. Dr W Junk Publishers, The Hague, pp 259–266CrossRefGoogle Scholar
  20. Leonardi S, Rapp M (1990) Production de phytomasse et utilisation des bioéléments lors de la reconstitution d’un taillis de chêne vert. Acta Oecol 11:819–834Google Scholar
  21. Lo Gullo MA, Salleo S (1993) Different vulnerabilities of Quercus ilex L. to freeze-and summer drought-induced xylem embolism: an ecological interpretation. Plant Cell Environ 16:511–516CrossRefGoogle Scholar
  22. Lo Gullo MA, Salleo S, Piaceri EC, Rosso R (1995) Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris Plant Cell Environ 18:661–669CrossRefGoogle Scholar
  23. Lossaint P, Rapp M (1978) La forêt méditerranéenne de chênes verts. In: Lamotte M, Bourlière F (eds) Problèmes d’écologie: structure et fonctionnement des écosystèmes terrestres. Masson, Paris, pp 129–185Google Scholar
  24. Loveless AR (1961) A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann Bot 25:168–184Google Scholar
  25. Margaris SN (1981) Adaptative strategies in plants dominating Mediterranean-type ecosystems. In: Di Castri F, Goodall DW, Specht RL (eds) Mediterranean-type shrublands. Elsevier, New York, pp 309–314Google Scholar
  26. Miller PC (1981) Conceptual basis and organization of research. In: Miller PC (ed) Resource use by chaparral and matorral. Springer, New YorkCrossRefGoogle Scholar
  27. Mitrakos (1980) A theory for Mediterranean plant-life. Oecol Plant 1:245–252Google Scholar
  28. Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35:299–319CrossRefGoogle Scholar
  29. Morris JT (1989) Modelling light distribution within the canopy of the marsh grass Spartina alterniflora as a function of canopy biomass and solar angle. Agric For Meteorol 46:349–361CrossRefGoogle Scholar
  30. Oechel WC, Lawrence W, Mustafa J, Martínez J (1981) Energy and carbon acquisition. In: Miller PC (ed) Resource use by chaparral and matorral. Springer, Berlin, pp 151–184CrossRefGoogle Scholar
  31. Oliveira G (1995) Autecologia do sobreiro (Quercus suber L.) em montados portugueses. PhD Thesis, University of Lisboa, LisboaGoogle Scholar
  32. Oliveira G, Correira OA, Martins-Louçao MA, Catarino FM (1992) Water relations of cork-oak (Quercus suber L.) under natural conditions. Vegetatio 99/100:199–208CrossRefGoogle Scholar
  33. Rabella R (1991) Ecofisiologia de les relacions hídriques del faig al Montseny. PhD Thesis, Autonomous University of Barcelona, BellaterraGoogle Scholar
  34. Rabella R, Savé R, Terradas J (1983) Conducta hídrica vertical del encinar montano de La Castanya (Montseny). V Reunión de la Sociedad Española de Fisiología Vegetal, MurciaGoogle Scholar
  35. Rambal S (1992) Quercus ilex facing water stress: a functional equilibrium hypothesis. Vegetatio 99/100:147–153CrossRefGoogle Scholar
  36. Rambal S, Debussche G (1995) Water balance of Mediterranean ecosystems under a changing climate. In: Moreno JM, Oechel WC (eds) Global change and Mediterranean-type ecosystems. Springer, New York, pp 386–407CrossRefGoogle Scholar
  37. Sakai A, Larcher W (1987) Frost survival of plants. Springer, BerlinCrossRefGoogle Scholar
  38. Sala A, Tenhunen JD (1994) Site-specific water relations and stomatal response of Quercus ilex L. in a Mediterranean watershed. Tree Physiol 14:601–617PubMedCrossRefGoogle Scholar
  39. Sala A, Tenhunen JD (1996) Simulations of canopy net photosynthesis and transpiration in Quercus ilex L. under the influence of seasonal drought. Agric For Meteorol 78:203–222CrossRefGoogle Scholar
  40. Sala A, Pícolo R, Piñol J (1988) Efectos del frío en las relaciones hídricas de Quercus ilex en la sierra de Prades (Tarragona). Options Méditerr 3:57–62Google Scholar
  41. Sala A, Burriel JA, Tenhunen JD (1990) Spatial and temporal controls on transpiration within a watershed dominated by Quercus ilex Proc on Quercus ilex L. ecosystems: function, dynamics and management, Montpellier-Barcelona, September 1990Google Scholar
  42. Salleo S, Lo Gullo MA (1990) Sclerophylly and plant water relations in three Mediterranean Quercus species. Ann Bot 65:259–270Google Scholar
  43. Salleo S, Nardini A, Lo Gullo MA (1997) Is sclerophylly of Mediterranean evergreens an adaptation to drought? New Phytol 135:603–612CrossRefGoogle Scholar
  44. Savé R (1986) Ecofisiologia de les relacions hídriques de l’alzina al Montseny. PhD Thesis, Autonomous University de Barcelona, Bellatera.Google Scholar
  45. Savé R, Rabella R, Gascón E, Terradas J (1982) Transpiration and diffusion resistance of leaves of Quercus ilex L. at La Castanya (Montseny, Catalonia, NE Spain). USDA For Sery Gen Tech Rep PSW-58:632Google Scholar
  46. Savé R, Rabella R, Terradas J (1988) Effects of low temperature on Quercus ilex ssp. ilex water relations. In: Di Castri F, Floret Ch, Rambal S, Roy J (eds) Time scales and water stress. Proc 5th Int Conf on Mediterranean ecosystems. International Union of Biological Sciences, Paris, pp 1103–1105Google Scholar
  47. Sperry JS (1995) Limitations on stem water transport and their consequences. In: Gartner BL (ed) Plant stems. Physiology and functional morphology. Academic Press, San Diego, pp 105–124Google Scholar
  48. Sperry JS, Tyree MT (1990) Water-stress-induced xylem embolism in three species of conifers. Plant Cell Environ 13:427–436CrossRefGoogle Scholar
  49. Tenhunen J, Sala A, Harley PC, Dougherty RL, Reynolds JF (1990) Factors influencing carbon fixation and water use by Mediterranean sclerophyll shrubs during summer drought. Oecologia 82:381–393CrossRefGoogle Scholar
  50. Terradas J, Savé R (1992) The influence of summer and winter stress and water relationships on the distribution of Quercus ilex L. Vegetatio 99/100:137–145CrossRefGoogle Scholar
  51. Tranquillini W (1976) Water relations and alpine timberline. In: Lange OL, Kappen L, Schulze ED (eds) Water and plant life. Springer, Berlin, pp 473–491CrossRefGoogle Scholar
  52. Tranquillini W (1982) Frost-drought and its ecological significance. In: Lange OL, Nobel PS, Osmond CR, Ziegler H (eds) Physiological plant ecology. Encyclopaedia of plant physiology, vol 11. Springer, Berlin, pp 379–400Google Scholar
  53. Turner IM (1994) Sclerophylly: primarily protective? Funct Ecol 8:669–675CrossRefGoogle Scholar
  54. Tyree MT, Dixon MA (1986) Water stress induced cavitation and embolism in some woody plants. Physiol Plant 66:397–405CrossRefGoogle Scholar
  55. Tyree MT, Richter H (1981) Alternative methods of analyzing water potential isotherms: some cautions and clarifications. I. The impact on non-linearity and of some experimental errors. J Exp Bot 32:643–653CrossRefGoogle Scholar
  56. Tyree MT, Richter H (1982) Alternative methods of analyzing water potential isotherms: some cautions and clarifications. II. Curvilinearity in water potential isotherms. Can J Bot 60: 911–916CrossRefGoogle Scholar
  57. Zimmerman MH (1983) Xylem structure and the ascent of sap. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Robert Savé
  • Carles Castell
  • Jaume Terradas

There are no affiliations available

Personalised recommendations