One-Flavour Hybrid Monte Carlo with Wilson Fermions

  • Thomas Lippert
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 15)


The Wilson fermion determinant can be written as product of the determinants of two hermitian positive definite matrices. This formulation allows to simulate non-degenerate quark flavors by means of the hybrid Monte Carlo algorithm. A major numerical difficulty is the occurrence of nested inversions. We construct a Uzawa iteration scheme which treats the nested system within one iterative process.


Light Quark Dirac Matrice Wilson Fermion Chiral Representation Fermionic Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Caso et al. (Particle Data Group). Review of particle properties. European Phys. Tour., C3, 77–169 1999.Google Scholar
  2. 2.
    J. Gasser and H. Leutwyler. Quark masses. Phys. Rept., 87:77–169, 1982.CrossRefGoogle Scholar
  3. 3.
    A. Frommer, V. Hannemann, B. Nöckel, Th. Lippert, and K. Schilling. Accelerating Wilson fermion matrix inversions by means of the stabilized biconjugate gradient algorithm. Int. J. Mod. Phys., C5:1073, 1994.Google Scholar
  4. 4.
    S. Fischer, A. Frommer, U. Glässner, Th. Lippert, G. Ritzenhöfer, and K. Schilling. A parallel SSOR preconditioner for lattice QCD. Comp. Phys. Commun., 98:20–34, 1996.CrossRefGoogle Scholar
  5. 5.
    S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Phys. Lett.,B195:216, 1987.Google Scholar
  6. 6.
    S. Gottlieb, W. Liu, D. Toussaint, R. L. Renken, and R. L. Sugar. Hybrid molecular dynamics algorithms for the numerical simulation of quantum chromodynamics. Phys. Rev.,D35:2531, 1987.Google Scholar
  7. 7.
    D. H. Weingarten and D. N. Petcher. Monte Carlo integration for lattice gauge theories with fermions. Phys. Lett.,B99:333, 1981.MathSciNetGoogle Scholar
  8. 8.
    K. G. Wilson. Quarks: from paradox to myth. In New Phenomena In Subnuclear Physics,volume Part A, pages 13–22. New York, 1977, 1975. Proceedings of Erice summer school, Erice.Google Scholar
  9. 9.
    H. Neuberger. The overlap Dirac operator. In Frommer et al. [21]. These proceedings.Google Scholar
  10. 10.
    S. Sharpe and N. Shoresh. Partially quenched QCD with non-degenerate dynamical quarks. 1999.Google Scholar
  11. 11.
    N. Eicker, P. Lacock, K. Schilling, A. Spitz, U. Glässner, S. Güsken, H. Hoeber, Th. Lippert, Th. Struckmann, P. Ueberholz, and J. Viehoff. Light and strange hadron spectroscopy with dynamical Wilson fermions. Phys. Rev., D59:014509, 1999.Google Scholar
  12. 12.
    A. Ali Khan et al. Light hadron spectrum and quark masses in QCD with two flavors of dynamical quarks. hep-lat/9909050, 1999.Google Scholar
  13. 13.
    Claude Bernard et al. The static quark potential in three flavor qcd. 2000.Google Scholar
  14. 14.
    A. Peikert, F. Karsch, E. Laermann, and B. Sturm. The three flavour chiral phase transition with an improved quark and gluon action in lattice QCD. Nucl. Phys. Proc. Suppl., 73:468, 1999.zbMATHCrossRefGoogle Scholar
  15. 15.
    M. Löscher. A new approach to the problem of dynamical quarks in numerical simulations of lattice QCD. Nucl. Phys., B418:637–648, 1994.CrossRefGoogle Scholar
  16. 16.
    C. Alexandrou et al. The deconfinement phase transition in one-flavor QCD. Phys. Rev., D60:034504, 1999.MathSciNetGoogle Scholar
  17. 17.
    C. Alexandrou et al. Thermodynamics of one-flavour QCD. Preprint heplat/9806004, 1998.Google Scholar
  18. 18.
    I. Montvay. Least-squares optimized polynomials for fermion simulations. In Frommer et al. [21]. These proceedings. 1998Google Scholar
  19. 19.
    Th. Lippert. The hybrid Monte Carlo algorithm for quantum chromodynamics. In H. Meyer-Ortmanns and A. Klümper, editors, Field theoretical tools for polymer and particle physics, volume 508 of Lecture Notes in Physics, pages 122–131. Springer Verlag, Heidelberg, 1998. Proceedings of Workshop of the Graduiertenkolleg at the University of Wuppertal, June, 1997.Google Scholar
  20. 20.
    J. H. Bramble, J. E. Pasciak, and A. T. Vassilev. Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal., 34:1072–1092, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    A. Frommer, Th. Lippert, B. Medeke, and K. Schilling, editors. Numerical Challenges in Lattice QCD. Springer Verlag, Heidelberg, 2000. Proceedings of International Workshop, University of Wuppertal, August 22–24, 1999, Present proceedings.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Thomas Lippert
    • 1
  1. 1.Department of PhysicsUniversity of WuppertalWuppertalGermany

Personalised recommendations