Advertisement

On the Symmetries of Integrable Systems

  • P. G. Grinevich
  • A. Yu. Orlov
  • E. I. Schulman
Part of the Springer Series in Nonlinear Dynamics book series (SSNONLINEAR)

Abstract

Symmetries play a very important role in mathematics as well as in physics. Many problems were solved by studying their symmetry properties. For example Gauss in his first and beloved work found how to construct a 17-sided polygon with compasses and ruler. The essential part of his method was studying the invariants of the equation z17 - 1 = O. Other significant results based on the symmetry approach were obtained by Abel and Galois in the theory of algebraic equations. Abel proved that the solution of a general 5th degree algebraic equation cannot be expressed via radicals. Galois succeeded to elicit conditions of solvability of an algebraic equation in radicals using its symmetry group. The analog of Galois theory for ordinary differential equations was developed in our century.

Keywords

Riemann Surface Vertex Operator Riemann Problem Solvable Equation Recursion Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Wigner, Symmetries and reflections, Bloomington - London, 1967.Google Scholar
  2. [2]
    N.J. Zabusky, M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Letters, 15, pp. 240–243, (1965); C.S. Gardner, J.M. Green, M.D. Kruskal, R.M. Miura, Comm. Pure. Appl. Math., 27, 97–133 (1974).ADSzbMATHCrossRefGoogle Scholar
  3. [3]
    A.C. Newell, Solitons in Mathematics and Physics, Conf. Bd. Math. Soc., 43, Soc. Indust. Appl. Math. (1985).Google Scholar
  4. [4]
    V.E. Zakharov, E.I. Schulman, Integrability of Nonlinear Systems and Perturbation Theory, in “What is Integrability?”, ed. by V.E. Zakharov, Springer Series in Nonlinear Dynamics pp. 185–250 (1991).Google Scholar
  5. [5]
    F. Calogero, Why are Certain Nonlinear PDEs both Widely Applicable and Integrable?, in “What is Integrability?”, ed. by V.E. Zakharov, Springer Series in Nonlinear Dynamics pp. 1–61 (1991).Google Scholar
  6. [6]
    P.D. Lax, Comm. Pure Appl. Math., 21, pp. 467–490 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    A.Yu. Orlov, Symmetries for Unifying Different Systems into a Single Integrable Hierarchy, Preprint IINS/Oce-04/03, 1991.Google Scholar
  8. [8]
    V.E. Zakharov, S.V. Manakov, S.P. Novikov, L.P. Pitaevsky, Soliton Theory, (Plenum, New-York, 1984).Google Scholar
  9. [9]
    M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981).zbMATHCrossRefGoogle Scholar
  10. [10]
    N.Kh. Ibragimov, A.B. Shabat, Dokl. Acad. Nauk SSSR, 244, 1, pp. 56–61 (1979).MathSciNetGoogle Scholar
  11. [11]
    H.H. Chen, Y.C. Lee, J.E. Lin. Physica 9D, 9, N3, pp. 439–445 (1983).MathSciNetADSzbMATHGoogle Scholar
  12. [12]
    F.J. Schwarz, J. Phys. Soc. Japan, 51, 8, p. 2387 (1982)MathSciNetCrossRefGoogle Scholar
  13. [13]
    B. Fuchssteiner, Progr. Theor. Phys., 70, pp. 1508–1522 (1983).; W. Oevel, B. Fuchssteiner, Phys. Lett. 88A, 323, (1982).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [14]
    V.E. Zakharov, A.B. Shabat, Funct. Anal. i ego Priloz. 13, 3, pp. 13–22 (1979).MathSciNetGoogle Scholar
  15. [15]
    V.E. Zakharov, A.B. Mikhailov, ZhETF, 74, 6, pp. 1954–1973, (1978).MathSciNetGoogle Scholar
  16. [16]
    V.E. Zakharov, L.A. Takhtajan, Teor. Mat. Fiz., 38, 1, pp. 26–35 (1979).CrossRefGoogle Scholar
  17. [17]
    A.S. Fokas, P. Santini, Communications in Math. Phys. 115, 116 (1988).MathSciNetGoogle Scholar
  18. [18]
    A.Yu. Orlov, E.I. Schulman, Additional Symmetries of Integrable Systems and Conformal Algebra Representations. Preprint IA and E, N217, Novosibirsk, 1984. A.Yu. Orlov, E.I. Schulman, Teor. Mat. Fiz., 64, pp. 323–327 (1985).CrossRefGoogle Scholar
  19. [19]
    A.Yu. Orlov, E.I. Schulman, Additional Symmetries for 2-D Integrable Systems. Preprint IA and E, N277, Novosibirsk, 1985. A.Yu. Orlov, E.I. Schulman, Letters in Math. Phys., 12, pp. 171–179, (1986).MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. [20]
    A.Yu. Orlov, Vertex Operator, - Problem, Symmetries, Variational Identities and Hamiltonian Formalism for 2+1 Integrable Systems. Proc. IV Int. Workshop on Nonlinear and Turb. Proc. Phys., Singapore, 1989, pp. 116–134.Google Scholar
  21. [21]
    P.G. Grinevich, A.Yu. Orlov, Wilson r-function and det ¿. In Proc. IV Int. Workshop on Nonlinear and Turb. Proc. Phys., Kiev, 1989, pp. 242–245.Google Scholar
  22. [22]
    P.G. Grinevich, A.Yu. Orlov, Vector Fields Action on Riemann Surfaces and KP Theory. Krichever-Novikov Problem. ibid., pp. 246–249.Google Scholar
  23. [23]
    P.G. Grinevich, A.Yu. Orlov, Higher Symmetries of KP Equation and the Virasoro Action on Riemann Surfaces. In “Nonlinear Eqs. and Dynamical Syst., ed. S. Carillo, O. Ragnisco, Springer, 1990, pp. 165–169.CrossRefGoogle Scholar
  24. [24]
    P.G. Grinevich, A.Yu. Orlov, In “Modern Problems of Quantum Field Theory”, Springer-Verlag, 1989.Google Scholar
  25. [25]
    V.E. Zakharov, A.V. Shabat, Funct. Anal. i ego Priloz., 8, pp. 43–53 (1974).Google Scholar
  26. [26]
    A.S. Fokas, D. BarYaacov, M.J. Ablowitz, Stud. Appl. Math., 69, N2, pp. 135–143, (1983).MathSciNetzbMATHGoogle Scholar
  27. [27]
    A.S. Fokas, M.J. Ablowitz, Stud. Appl. Math., 69, N3, pp. 211–228, (1983).MathSciNetzbMATHGoogle Scholar
  28. [28]
    A.S. Fokas, M.J. Ablowitz, Phys. Rev. Letters, 51, 1, pp. 7–11, (1983).MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    V.E. Zakharov, S.V. Manakov, Funct. Anal. i ego Priloz., 19, 2, pp. 11–25, (1985).MathSciNetGoogle Scholar
  30. [30]
    S.V. Manakov, Physica P, 3, N1+2, pp. 420–427, (1981).MathSciNetADSzbMATHGoogle Scholar
  31. [31]
    I.M. Krichever, This volume. and Uspechy Math. Nauk, 44, 2, pp. 121–184, (1989); Uspechy Math. Nauk, 32(6), 183–208, (1977).MathSciNetGoogle Scholar
  32. [32]
    I.M. Krichever, S.P. Novikov, Funct. Anal. i ego Priloz., 21, 2, 46 (1987).MathSciNetGoogle Scholar
  33. [33]
    I.M. Krichever, S.P. Novikov, Funct. Anal. i ego Priloz., 23, 1, 24 (1989).MathSciNetGoogle Scholar
  34. [34]
    E. Date, M. Kashiwara, M. Jimbo, T. Miwa, In Proc. RIMS Symposium, World Scientific, Singapore (1983).Google Scholar
  35. [35]
    D. David, D. Levi, P. Winternitz, Phys. Lett. 118A, 390(1986).MathSciNetADSGoogle Scholar
  36. [36]
    A.V. Veselov, S.P. Novikov, Dokl. Akad. Nauk SSSRGoogle Scholar
  37. [37]
    E. Schulman, L. Ryzhik, to appear.Google Scholar
  38. [38]
    A.V. Mikhailov, Physica 3D, 73–117(1981).Google Scholar
  39. [39]
    H. Flaschka, A.C. Newell, Comm. Math. Phys., 76, 65–116(1980); A.R. Its, Soviet Math. Dokl., 24(1981); M. Jimbo, T. Miwa, Physica 2D, 407 (1981).MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. [40]
    R. Ilirota, In “Backlund transformations”, R.M. Miura ed., Lect. Notes Math. 515 (1976).Google Scholar
  41. [41]
    M. Sato, T. Miwa, M. Jimbo, Holonomic Quantum Fields I, II, III, IV, V Publ. RIMS, Kyoto Univ., 14, 223–267 (1978); 15, 201–278; 577–629; 871–972 (1979), 531–584 (1980); and also RIMS Preprint 246 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    P.G. Grinevich, Funct. Anal. i ego Priloz., 23, 4, 79–80 (1989).MathSciNetGoogle Scholar
  43. [43]
    F. Calogero, A. Degasperis, Lett. Nuov. Cim., 22 (1978), 420; V.A. Belinskii, V.E. Zakharov, JETP, 12 (1978), 1953 (Russian); Maison, Phys Lett (1978).MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    M. Shiffer, D.K. Spencer, Functional on Finite Riemann Surfaces, Moscow, 1957.Google Scholar
  45. [45]
    M.A. Semenov-Tian-Shansky, Funct. Anal. i ego Priloz., 17, 4, 17–33 (1983).Google Scholar
  46. [46]
    M.J. Ablowitz, D. Kaup, A.C. Newell, II. Segur, Stud. Appl. Math., 53, 249–315 (1974).MathSciNetGoogle Scholar
  47. [47]
    I.M. Krichever, Funct. Anal. i ego Priloz. 12, 3, 20–31 (1978); Engl. transl. in Functional Anal. Appl. 12 (1978); I.M. Krichever, S.P. Novikov, Dokl. Akad. Nauk SSSR 247 (1979); Engl. transi. in Soviet. Math. Dokl, 20(1979).Google Scholar
  48. [48]
    N. Kawamoto, Yu. Namikawa, A. Tsuchiya, Ya. Yamada, Comm. Math. Phys. 116, No 2, 247–308 (1988).MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. [49]
    F. Calogero, A. Degasperis, Spectral transform and solitons. North-Holland Publishing Company, 1982.Google Scholar
  50. [50]
    H.H. Chen, J.E. Lin, Constraints in Kadomtsev-Petviashvili Equation. Preprint N82–112, Univ. of Maryland, 1981.Google Scholar
  51. [51]
    A. Reiman, M. Semionov-Tian-Shainski, Notes of Sci. Seminars of LOMI, vol. 133, pp. 212–227 (1984).Google Scholar
  52. [52]
    T. Shiota, Invent. Math., 83, 333–382 (1986).MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. [53]
    G. Segal, G. Wilson, Publ. Math. I1IES 61, p. 5 (1985).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • P. G. Grinevich
    • 1
  • A. Yu. Orlov
    • 2
  • E. I. Schulman
    • 2
  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia
  2. 2.Oceanology InstituteMoscowRussia

Personalised recommendations