Standardisation of Data Set under Different Measurement Scales
Conference paper
- 11 Citations
- 386 Downloads
Abstract
Standardisation of multivariate observations is the important stage that precedes the determination of distances (dissimilarities) in clustering and multidimensional scaling. Different studies (e.g. Milligan, Cooper (1988)) show the effect of standardisation on the cluster structure in various data configurations. In the paper a survey of standardisation formulas is given. Then we consider the problem of different scales of measurement and their impact on:
-
— the selection of the standardisation formula;
-
— the selections of the appropriate dissimilarity (or similarity) measure.
Keywords
Multidimensional Scaling Location Parameter Standardisation Formula Ratio Scale Weak Scale
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- anderberg, M.R. (1973): Cluster Analysis for Applications. Academic Press, New York, San Francisco, London.Google Scholar
- Cormack, R.M. (1971): A Review of Classification (with Discussion). Journal of the Royal Statistical Society, Ser. A, (3), 321–367.CrossRefGoogle Scholar
- Cox, T.F. and Cox, M.A.A. (1994): Multidimensional Scaling. Chapman and Hall, London.Google Scholar
- Hand, D.J. (1996): Statistics and the Theory of Measurement. Journal of the Royal Statistical Society, Ser. A, (3), 445–492.Google Scholar
- Jajuga, K. (1981): Metody analizy wielowymiarowej w ilościowych badaniach przestrzennych [Multivariate Methods in Quantitative Spatial Research]. Wroclaw University of Economics.Google Scholar
- Jajuga, K. (1999): Walesiak, M. (1999): Klasyfikacja i analiza danych — teoria i zastosowania. Taksonomia 6. Wroclaw University of Economics, 23–3Google Scholar
- Kaufman, L. and Rousseeuw, P.J. (1990): Finding Groups in Data: an Introduction to Cluster Analysis. Wiley, New York.CrossRefGoogle Scholar
- Milligan, G.W. and Cooper, M.C. (1988): A Study of Standardization of Variables in Cluster Analysis. Journal of Classification No. 2, 181–204.CrossRefGoogle Scholar
- Milligan, G.W. (1995): Issues in Applied Classification: Variable Standardization. CSNA Newsletter, February, Issue 38.Google Scholar
- Stevens, S.S. (1959): Measurement, Psychophysics and Utility. In: Churchman, C.W. and Ratoosh, P. (Eds.), Measurement; Definitions and Theories. Wiley, New York.Google Scholar
- Walesiak, M. (1990): Syntetyczne badania porównawcze w świetle teorii pomiaru [Synthetic Comparative Studies in the Light of the Measurement Theory]. Przeglad Statystyczny z. 1-2, 37–46.Google Scholar
- Walesiak, M. (1993): Statystyczna analiza wielowymiarowa w badaniach marketingowych [Multivariate Statistical Analysis in Marketing Research]. Wroclaw University of Economics, Research Papers No. 654.Google Scholar
- Walesiak, M. (1995): The Analysis of Factors Influencing the Choice of the Methods in the Statistical Analysis of Marketing Data. Statistics in Transition June, Vol. 2, No. 2, 185–194.Google Scholar
- Walesiak, M., Dziechciarz, J., and Bak, A. (1998): Ordinal Variables in the Segmentation of Advertisement Receivers. In: Rizzi, A., Vichi, N., and Bock, H.H. (1998): Advances in Data Science and Classification. Proc. 6th Conf. International Federation of Classification Societies in Rome, Springer, Heidelberg, 655–662.CrossRefGoogle Scholar
- Walesiak, M. (1999): Distance Measure for Ordinal Data. Argumenta Oeconomica (in press).Google Scholar
- Wedel, M. and Kamakura, W.A. (1998): Market Segmentation. Conceptual and Methodological Foundations. Kluwer, Boston, Dordrecht, London.Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2000