Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 151 / 2))

The first demonstration that adenosine had anti-inflammatory properties was made in 1983 ({scC{upronstein}} et al. 1983) and the purine was subsequently shown to mediate its anti-inflammatory effects via specific cell surface receptors ({scC{upronstein}} et al. 1985; {sc{upRoberts} et al. 1985). Since 1983 it has also been known that locally released adenosine may act as an endogenous anti-inflammatory mediator ({sc{upCronstein}} et al. 1983) and it was subsequently demonstrated that promotion of endogenous adenosine release may mediate the anti-inflammatory effects of several potent agents currently in use for the treatment of inflammatory diseases like rheumatoid arthritis (RA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali H, Choi OH, Fraundorfer PF, Yamada K, Gonzaga HM, Beaven MA (1996) Sustained activation of phospholipase D via adenosine A3 receptors is associated with enhancement of antigen- and Ca(2+)-ionophore-induced secretion in a rat mast cell line. J Pharmacol Exp Ther 276:837–845

    PubMed  CAS  Google Scholar 

  • Auchampach JA, Jin X, Wan TC, Caughey GH, Linden J (1997) Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol Pharmacol 52:846–860

    PubMed  CAS  Google Scholar 

  • Barbieri D, Abbracchio MP, Salvioli S, Monti D, Cossarizza A, Ceruti S, Brambilla R, Cattabeni F, Jacobson KA, Franceschi C (1998) Apoptosis by 2-chloro-2′-deoxy-adenosine and 2-chloro-adenosine in human peripheral blood mononuclear cells. Neurochem Int 32:493–504

    PubMed  CAS  Google Scholar 

  • Becker BF, Zahler S, Raschke P, Schwartz LM, Beblo S, Schrodl W, Kiesl D (1992) Adenosine enhances neutrophil sticking in the coronary system: a novel mechanism contributing to cardiac reperfusion damage. Pharm Pharmacol Letts 2:8–11

    CAS  Google Scholar 

  • Bengis-Garber C, Gruener N (1992) Cross-talk between cAMP and formylmet-leu-phe in human neutrophils: phosphorylation of a 52,000 molecular weight protein. Cell Signal 4:247–260

    PubMed  CAS  Google Scholar 

  • Bjorck T, Gustafsson LE, Dahlen SE (1992) Isolated bronchi from asthmatics are hyperresponsive to adenosine, which apparently acts indirectly by liberation of leukotrienes and histamine. Am Rev Respir Dis 145:1087–1091

    PubMed  CAS  Google Scholar 

  • Boisseau MR, Pruvost A, Renard M, Closse C, Belloc F, Seigneur M, Maurel A (1996) Effect of buflomedil on the neutrophil-endothelial cell interaction under inflammatory and hypoxia conditions. Haemostasis 26 Suppl 4:182–188

    Google Scholar 

  • Bong GW, Rosengren S, Firestein GS (1996) Spinal cord adenosine receptor stimulation in rats inhibits peripheral neutrophil accumulation. The role of N-methyl-D-aspartate receptors. J Clin Invest 98:2779–2785

    PubMed  CAS  Google Scholar 

  • Bouma MG, Jeunhomme TMMA, Boyle DL, Dentener MA, Voitenok NN, van den Wildenberg FAJM, Buurman WA (1997) Adenosine inhibits neutrophil degranulation in activated human whole blood; involvement of adenosine A2 and A3 receptors. J Immunol 158:5400–5408

    PubMed  CAS  Google Scholar 

  • Bouma MG, van den Wildenberg FAJM, Buurman WA (1996) Adenosine inhibits cytokine release and expression of adhesion molecules by activated human endothelial cells. Am J Physiol 39:C522–C529

    Google Scholar 

  • Brambilla R, Ceruti S, Malorni W, Caltobeni F, Abbracchio MP (2000) A novel gliotic P2 receptor mediating cyclotexygenase-2 induction in rat and human astocytic. J Ant Nerv System 81:3–9

    CAS  Google Scholar 

  • Bullough DA, Magill MJ, Firestein GS, Mullane KM (1995) Adenosine activates A2 receptors to inhibit neutrophil adhesion and injury to isolated cardiac myocytes. J Immunol 155:2579–2586

    PubMed  CAS  Google Scholar 

  • Burkey TH, Webster RO (1993) Adenosine inhibits fMLP-stimulated adherence and superoxide anion generation by human neutrophils at an early step in signal transduction. Biochim Biophys Acta 1175:312–318

    PubMed  CAS  Google Scholar 

  • Colli S, Tremoli E (1991) Multiple effects of dipyridamole on neutrophils and mononuclear leukocytes: adenosine-dependent and adenosine-independent mechanisms. J Lab Clin Med 118:136–145

    PubMed  CAS  Google Scholar 

  • Cronstein BN, Duguma L, Nicholls D, Hutchison A, Williams M (1990) The adenosine/neutrophil paradox resolved. Human neutrophils possess both A1 and A2 receptors which promote Chemotaxis and inhibit O2- generation, respectively. J Clin Invest 85:1150–1157

    PubMed  CAS  Google Scholar 

  • Cronstein BN, Eberle MA, Gruber HE, Levin RI (1991a) Methotrexate inhibits neutrophil function by stimulatingadenosine release from connective tissue cells. Proc Natl Acad Sci (USA) 88:2441–2445

    Google Scholar 

  • Cronstein BN, Haines KA (1992) Adenosine A2 receptor occupancy does not affect “triggering” but inhibits “activation” of human neutrophils by a mechanism independent of actin filament formation. Biochem J 281:631–635

    PubMed  CAS  Google Scholar 

  • Cronstein BN, Haines KA, Kolasinski SL, Reibman J (1991b) Gs linked receptors (Beta-adrenergic and adenosine A2) uncouple chemoattractant receptors from G proteins. Clin Res 39:343 A

    Google Scholar 

  • Cronstein BN, Haines KA, Kolasinski SL, Reibman J (1992a) Occupancy of G alphas-linked receptors uncouples chemoattractant receptors from their stimulus-transduction mechanisms in the neutrophil. Blood 80:1052–1057

    Google Scholar 

  • Cronstein BN, Kramer SB, Rosenstein ED, Korchak HM, Weissmann G, Hirschhorn R (1988) Occupancy of adenosine receptors raises cyclic AMP alone and in synergy with occupancy of chemoattractant receptors and inhibits membrane depolarization. Biochem J 252:709–715

    PubMed  CAS  Google Scholar 

  • Cronstein BN, Kramer SB, Weissmann G, Hirschhorn R (1983) Adenosine: a physiological modulator of superoxide anion generation by human neutrophils. J Exper Med 158:1160–1177

    CAS  Google Scholar 

  • Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R (1986) Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest 78:760–770

    PubMed  CAS  Google Scholar 

  • Cronstein BN, Levin RI, Philips MR, Hirschhorn R, Abramson SB, Weissmann G (1992b) Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol 148:2201–2206

    Google Scholar 

  • Cronstein BN, Montesinos MC, Weissmann G (1999) Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFkB. Proc Natl Acad Sci USA 96:6377–6381

    PubMed  CAS  Google Scholar 

  • Cronstein BN, Naime D, Firestein G (1995) The antiinflammatory effects of an adenosine kinase inhibitor are mediated by adenosine. Arthritis Rheum 38:1040–1045

    PubMed  CAS  Google Scholar 

  • Cronstein BN, Naime D, Ostad E (1993) The antiinflammatory mechanism of methotrexate: increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest 92:2675–2682

    PubMed  CAS  Google Scholar 

  • Cronstein BN, Rosenstein ED, Kramer SB, Weissmann G, Hirschhorn R (1985) Adenosine; a physiologic modulator of superoxide anion generation by human neutrophils. Adenosine acts via an A2 receptor on human neutrophils. J Immunol 135:1366–1371

    PubMed  CAS  Google Scholar 

  • Cronstein BN, Van de Stouwe M, Druska L, Levin RI, Weissmann G (1994) Nonsteroidal antiinflammatory agents inhibit stimulated neutrophil adhesion to endothelium: adenosine dependent and independent mechanisms. Inflamm 18:323–335

    CAS  Google Scholar 

  • Cronstein BN, Weissmann G (1993) The adhesion molecules of inflammation. Arth Rheum 36:147–157

    CAS  Google Scholar 

  • de la Harpe J, Nathan CF (1989) Adenosine regulates the respiratory burst of cytokinetriggered human neutrophils adherent to biologic surfaces. J Immunol 143:596–602

    PubMed  Google Scholar 

  • Deguchi H, Takeya H, Urano H, Gabazza EC, Zhou H, Suzuki K (1998) Adenosine regulates tissue factor expression on endothelial cells. Thromb Res 91:57–64

    PubMed  CAS  Google Scholar 

  • Eigler A, Greten TF, Sinha B, Haslberger C, Sullivan GW, Endres S (1997) Endogenous adenosine curtails lipopolysaccharide-stimulated tumour necrosis factor synthesis. Scand J Immunol 45:132–139

    PubMed  CAS  Google Scholar 

  • Elliott KRF, Stevenson HC, Miller PJ, Leonard EJ (1986) Synergistic action of adenosine and formyl-met-leu-phe in raising cyclic AMP content of purified human monocytes. Biochem Biophys Res Comm 138:1376–1382

    PubMed  CAS  Google Scholar 

  • Ethier MF, Chander V, Dobson JG, Jr. (1993) Adenosine stimulates proliferation of human endothelial cells in culture. Am J Physiol 265:H131–H138

    PubMed  CAS  Google Scholar 

  • Feoktistov I, Biaggioni I (1995) Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest 96:1979–1986

    PubMed  CAS  Google Scholar 

  • Feoktistov I, Biaggioni I (1998) Pharmacological characterization of adenosine A2B receptors: studies in human mast cells co-expressing A2A and A2B adenosine receptor subtypes. Biochem Pharmacol 55:627–633

    PubMed  CAS  Google Scholar 

  • Firestein GS, Bullough D, Erion M, Ugarkar B, Browne G, Barankiewicz J, Gruber H, Mullane K (1993) Adenosine regulating agents: a novel approach to acute inflammation and inflammatory arthritis. Clin Res 41:170A

    Google Scholar 

  • Firestein GS, Bullough DA, Erion MD, Jimenez R, Ramirez-Weinhouse M, Barankiewicz J, Smith CW, Gruber HE, Mullane KM (1995) Inhibition of neutrophil adhesion by adenosine and an adenosine kinase inhibitor: the role of selectins. J Immunol 154:326–334

    PubMed  CAS  Google Scholar 

  • Fozard JR, Pfannkuche HJ, Schuurman HJ (1996) Mast cell degranulation following adenosine A3 receptor activation in rats. Eur J Pharmacol 298:293–297

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Zhang Y, van der Ploeg I (1996) Adenosine A2A receptors mediate the inhibitory effect of adenosine on formyl-Met-Leu-Phe-stimulated respiratory burst in neutrophil leucocytes. Naunyn-Schmiedebergs Arch Pharmacol 354:262–267

    PubMed  CAS  Google Scholar 

  • Gadangi P, Longaker M, Naime D, Levin RI, Recht PA, Montesinos MC, Buckley MT, Carlin G, Cronstein BN (1996) The antiinflammatory mechanism of sulfasalazine is related to adenosine release at inflamed sites. J Immunol 156:1937–1941

    PubMed  CAS  Google Scholar 

  • Green PG, Basbaum AI, Helms C, Levine JD (1991) Purinergic regulation of bradykinin-induced plasma extravasation and adjuvant-induced arthritis in the rat. Proc Natl Acad Sci USA 88:4162–4165

    PubMed  CAS  Google Scholar 

  • Grinstein S, Furuya W (1986) Cytoplasmic pH regulation in activated human neutrophils: effects of adenosine and pertussis toxin on Na+/H+ exchange and metabolic acidification. Biochim Biophys Acta 889:301–309

    PubMed  CAS  Google Scholar 

  • Hannon JP, Pfannkuche HJ, Fozard JR (1995) A role for mast cells in adenosine A3 receptor-mediated hypotension in the rat. Br J Pharmacol 115:945–952

    PubMed  CAS  Google Scholar 

  • Hardart GE, Sullivan GW, Carper HT, Mandell GL (1991) Adenosine and 2-phenylaminoadenosine (CV-1808) inhibit human neutrophil bactericidal function. Infect Immun 59:885–889

    PubMed  CAS  Google Scholar 

  • Hasday JD, Sitrin RG (1987) Adenosine receptors on rabbit alveolar macrophages: binding characteristics and effects on cellular function. J Lab Clin Med 110:264–273

    PubMed  CAS  Google Scholar 

  • Haselton FR, Alexander JS, Mueller SN (1993) Adenosine decreases permeability of in vitro endothelial monolayers. J Appl Physiol 74:1581–1590

    PubMed  CAS  Google Scholar 

  • Hasko G, Szabo C, Nemeth ZH, Kvetan V, Pastores SM, Vizi ES (1996) Adenosine receptor agonists differentially regulate Il-10, TNF-α, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol 157:4634–4640

    PubMed  CAS  Google Scholar 

  • Haslett C, Guthrie LA, Kopaniak MM, Johnston RB, Jr., Henson PM (1985) Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Path 119:101–110

    PubMed  CAS  Google Scholar 

  • Holgate ST, Church MK, Polosa R (1991) Adenosine: a positive modulator of airway inflammation in asthma. Ann New York Acad Sci 629:227–236

    CAS  Google Scholar 

  • Hon WM, Moochhala S, Khoo HE (1997) Adenosine and its receptor agonists potentiate nitric oxide synthase expression induced by lipopolysaccharide in RAW 264.7 murine macrophages. Life Sci 60:1327–1335

    PubMed  CAS  Google Scholar 

  • Iannone MA, Reynolds-Vaughn R, Wolberg G, Zimmerman TP (1985) Human neutrophils possess adenosine A2 receptors. Fed Proc 44:580

    Google Scholar 

  • Iannone MA, Wolberg G, Zimmerman TP (1989) Chemotactic peptide induces cAMP elevation in human neutrophils by amplification of the adenylate cyclase response to endogenously produced adenosine. J Biol Chem 264:20177–20180

    PubMed  CAS  Google Scholar 

  • Jin X, Shepherd RK, Duling BR, Linden J (1997) Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest 100:2849–2857

    PubMed  CAS  Google Scholar 

  • Jordan JE, Zhao ZQ, Sato H, Taft S, Vinten-Johansen J (1997) Adenosine A2 receptor activation attenuates reperfusion injury by inhibiting neutrophil accumulation, superoxide generation and coronary endothelial adherence. J Pharmacol Exp Ther 280:301–309

    PubMed  CAS  Google Scholar 

  • Kitakaze M, Hori M, Morioka T, Takashima S, Minamino T, Sato H, Inoue M, Kamada T (1993) Attenuation of ecto-5′-nucleotidase activity and adenosine release in activated human polymorphonuclear leukocytes. Circ Res 73:524–533

    PubMed  CAS  Google Scholar 

  • Knight D, Zheng X, Rocchini C, Jacobson M, Bai T, Walker B (1997) Adenosine A3 receptor stimulation inhibits migration of human eosinophils. J Leukoc Biol 62:465–468

    PubMed  CAS  Google Scholar 

  • Kohno Y, Ji X, Mawhorter SD, Koshiba M, Jacobson KA (1996) Activation of A3 adenosine receptors on human eosinophils elevates intracellular calcium. Blood 88:3569–3574

    PubMed  CAS  Google Scholar 

  • Krump E, Lemay G, Borgeat P (1996) Adenosine A2 receptor-induced inhibition of leukotriene B4 synthesis in whole blood ex vivo. Brit J Pharm 117:1639–1644

    CAS  Google Scholar 

  • Lappin D, Whaley K (1984) Adenosine A2 receptors on human monocytes modulate C2 production. Clin Exp Immunol 57:454–460

    PubMed  CAS  Google Scholar 

  • Le Vraux V, Chen YL, Masson I, De Sousa M, Giroud JP, Florentin I, Chauvelot-Moachon L (1993) Inhibition of human monocyte TNF production by adenosine receptor agonists. Life Sci 52:1917–1924

    PubMed  Google Scholar 

  • Lennon PF, Taylor CT, Stahl GL, Colgan SP (1998) Neutrophil-derived 5′-adenosine monophosphate promotes endothelial barrier function via CD73-mediated conversion to adenosine and endothelial A2B receptor activation. J Exp Med 188:1433–1443

    PubMed  CAS  Google Scholar 

  • Leonard EJ, Shenai A, Skeel A (1987) Dynamics of chemotactic peptide-induced superoxide generation by human monocytes. Inflammation 11:229–240

    PubMed  CAS  Google Scholar 

  • Lesch ME, Ferin MA, Wright CD, Schrier DJ (1991) The effects of (R)-N-(l-methyl-2-phenylethyl) adenosine (L-PIA), a standard A1 selective adenosine agonist on rat acute models of inflammation and neutrophil function. Agents Actions 34:25–27

    PubMed  CAS  Google Scholar 

  • Londos C, Cooper DMF, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77:2551–2554

    PubMed  CAS  Google Scholar 

  • Marone G, Thomas L, Lichtenstein L (1980) The role of agonists that activate adenylate cyclase in the control of cAMP metabolism and enzyme release by human polymorphonuclear leukocytes. J Immunol 125:2277–2283

    PubMed  CAS  Google Scholar 

  • Marquardt DL (1998) Mast cell adenosine receptor characteristics and signaling. Adv Exp Med Biol 431:79–82

    PubMed  CAS  Google Scholar 

  • McGarrity ST, Stephenson AH, Webster RO (1989) Regulation of human neutrophil functions by adenine nucleotides. J Immunol 142:1986–1994

    PubMed  CAS  Google Scholar 

  • Meade CJ, Mierau J, Leon I, Ensinger HA (1996) In vivo role of the adenosine A3 receptor: N6−2-(4-aminophenyl)ethyladenosine induces bronchospasm in BDE rats by a neurally mediated mechanism involving cells resembling mast cells. J Pharmacol Exp Ther 279:1148–1156

    PubMed  CAS  Google Scholar 

  • Merrill JT, Shen C, Schreibman D, Coffey D, Zakharenko O, Fisher R, Lahita RG, Salmon J, Cronstein BN (1997) Adenosine A1 receptor promotion of multinucleated giant cell formation by human monocytes: a mechanism for methotrexate-induced nodulosis in rheumatoid arthritis. Arth Rheum 40:1308–1315

    CAS  Google Scholar 

  • Minamino T, Kitakaze M, Node K, Funaya H, Inoue M, Hori M, Kamada T (1996) Adenosine inhibits leukocyte-induced vasoconstriction. Amer J Physiol 271: H2622–2628

    PubMed  CAS  Google Scholar 

  • Montesinos MC, Gadangi P, Longaker M, Sung J, Levine J, Nilsen D, Reibman J, Li M, Jiang CK, Hirschhorn R, Recht PA, Ostad E, Levin RI, Cronstein BN (1997) Wound healing is accelerated by agonists of adenosine A2 (G alpha s-linked) receptors. J Exp Med 186:1615–1620

    PubMed  CAS  Google Scholar 

  • Morabito L, Montesinos MC, Schreibman DM, Balter L, Thompson LF, Resta R, Carlin G, Huie MA, Cronstein BN (1998) Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5′-nucleotidase-mediated conversion of adenine nucleotides. J Clin Invest 101:295–300

    PubMed  CAS  Google Scholar 

  • Moser GH, Schrader J, Deussen A (1989) Turnover of adenosine in plasma of human and dog blood. Am J Physiol 256:C799–C806

    PubMed  CAS  Google Scholar 

  • Node K, Kitakaze M, Minamino T, Tada M, Inoue M, Hori M, Kamada T (1997) Activation of ecto-5′-nucleotidase by protein kinase C and its role in ischaemic tolerance in the canine heart. Br J Pharmacol 120:273–281

    PubMed  CAS  Google Scholar 

  • Pearson JD, Gordon JL (1979) Vascular endothelial and smooth muscle cells in culture selectively release adenine nucleotides. Nature 281:384–386

    PubMed  CAS  Google Scholar 

  • Pillinger MH, Feoktistov AS, Capodici C, Solitar B, Levy J, Oei TT, Philips MR (1996) Mitogen-activated protein kinase in neutrophils and enucleate neutrophil cytoplasts: evidence for regulation of cell-cell adhesion. J Biol Chem 271:12049–12056

    PubMed  CAS  Google Scholar 

  • Poon A, Sawynok J (1998) Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 74:235–245

    PubMed  CAS  Google Scholar 

  • Prabhakar U, Brooks DP, Lipshlitz D, Esser KM (1995) Inhibition of LPS-induced TNF alpha production in human monocytes by adenosine (A2) receptor selective agonists. Inte J Immunopharmacol 17:221–224

    CAS  Google Scholar 

  • Ramkumar V, Stiles GL, Beaven MA, Ali H (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 268:16887–16890

    PubMed  CAS  Google Scholar 

  • Raschke P, Becker BF (1995) Adenosine and PAF dependent mechanisms lead to myocardial reperfusion injury by neutrophils after brief ischemia. Cardiovas Res 29:569–576

    CAS  Google Scholar 

  • Reeve AJ, Dickenson AH (1995) The roles of spinal adenosine receptors in the control of acute and more persistent nociceptive responses of dorsal horn neurones in the anaesthetized rat. Br J Pharmacol 116:2221–2228

    PubMed  CAS  Google Scholar 

  • Resta R, Hooker SW, Laurent AB, Jamshedur Rahman SM, Franklin M, Knudsen TB, Nadon NL, Thompson LF (1997) Insights into thymic purine metabolism and adenosine deaminase deficiency revealed by transgenic mice overexpressing ecto-5′-nucleotidase (CD73). J Clin Invest 99:676–683

    PubMed  CAS  Google Scholar 

  • Revan S, Montesinos MC, Naime D, Landau S, Cronstein BN (1996) Adenosine A2 receptor occupancy regulates stimulated neutrophil function via activation of a serine/threonine protein phosphatase. J Biol Chem 271:17114–17118

    PubMed  CAS  Google Scholar 

  • Richard LF, Dahms TE, Webster RO (1998) Adenosine prevents permeability increase in oxidant-injured endothelial monolayers. Am J Physiol 274:H35–H42

    PubMed  CAS  Google Scholar 

  • Richter J (1992) Effect of adenosine analogues and cAMP-raising agents on TNF-, GM-CSF-, and chemotactic peptide-induced degranulation in single adherent neutrophils. J Leukoc Biol 51:270–275

    PubMed  CAS  Google Scholar 

  • Ritchie PK, Spangelo BL, Krzymowski DK, Rossiter TB, Kurth E, Judd AM (1997) Adenosine increases interleukin 6 release and decreases tumour necrosis factor release from rat adrenal zona glomerulosa cells, ovarian cells, anterior pituitary cells, and peritoneal macrophages. Cytokine 9:187–198

    PubMed  CAS  Google Scholar 

  • Roberts PA, Newby AC, Hallett MB, Campbell AK (1985) Inhibition by adenosine of reactive oxygen metabolite production by human polymorphonuclear leucocytes. Biochem J 227:669–674

    PubMed  CAS  Google Scholar 

  • Rose FR, Hirschhorn R, Weissmann G, Cronstein BN (1988) Adenosine promotes neutrophil Chemotaxis. J Exp Med 167:1186–1194

    PubMed  CAS  Google Scholar 

  • Rosengren S, Arfors KE, Proctor KG (1991) Potentiation of leukotriene B4-mediated inflammatory response by the adenosine antagonist, 8-phenyl theophylline. Intl J Microcirc Clin Exp 10:345–357

    CAS  Google Scholar 

  • Rosengren S, Bong GW, Firestein GS (1995) Anti-inflammatory effects of an adenosine kinase inhibitor: decreased neutrophil accumulation and vascular leakage. J Immunol 154:5444–5451

    PubMed  CAS  Google Scholar 

  • Sajjadi FG, Takabayashi K, Foster AC, Domingo RC, Firestein GS (1996) Inhibition of TNF-alpha expression by adenosine: role of A3 adenosine receptors. J Immunol 156:3435–3442

    PubMed  CAS  Google Scholar 

  • Salmon JE, Brownlie C, Brogle N, Edberg JC, Chen B-X, Erlanger BF (1993) Human mononuclear phagocytes express adenosine A1 receptors: a novel mechanism for differential regulation of Fc-gamma receptor function. J Immunol 151:2775–2765

    PubMed  CAS  Google Scholar 

  • Salmon JE, Cronstein BN (1990) Fc gamma receptor-mediated functions in neutrophils are modulated by adenosine receptor occupancy. A1 receptors are stimulatory and A2 receptors are inhibitory. J Immunol 145:2235–2240

    PubMed  CAS  Google Scholar 

  • Sawynok J, Zarrindast MR, Reid AR, Doak G J (1997) Adenosine A3 receptor activation produces nociceptive behaviour and oedema by release of histamine and 5-hydroxytryptamine. Eur J Pharmacol 333:1–7

    PubMed  CAS  Google Scholar 

  • Schiele JO, Schwabe U (1994) Characterization of the adenosine receptor in microvascular coronary endothelial cells. Eur J Pharmacol 269:51–58

    PubMed  CAS  Google Scholar 

  • Schmeichel CJ, Thomas LL (1987) Methylxanthine bronchodilators potentiate multiple human neutrophil functions. J Immunol 138:1896–1903

    PubMed  CAS  Google Scholar 

  • Schrier DJ, Lesch ME, Wright CD, Gilbertsen RB (1990) The antiinflammatory effects of adenosine receptor agonists on the carrageenan-induced pleural inflammatory response in rats. J Immunol 145:1874–1879

    PubMed  CAS  Google Scholar 

  • Schwartz LM, Raschke P, Becker BF, Gerlach E (1993) Adenosine contributes to neu-trophil-mediated loss of myocardial function in post-ischemic guinea-pig hearts. J Mol Cell Cardiol 25:927–938

    PubMed  CAS  Google Scholar 

  • Sexl V, Mancusi G, Baumgartner-Parzer S, Schutz W, Freissmuth M (1995) Stimulation of human umbilical vein endothelial cell proliferation by A2-adenosine and beta 2-adrenoceptors. Br J Pharmacol 114:1577–1586

    PubMed  CAS  Google Scholar 

  • Sexl V, Mancusi G, Holler C, Gloria-Maercker E, Schutz W, Freissmuth M (1997) Stimulation of the mitogen-activated protein kinase via the A2A-adenosine receptor in primary human endothelial cells. J Biol Chem 272:5792–5799

    PubMed  CAS  Google Scholar 

  • Shepherd RK, Linden J, Duling BR (1996) Adenosine-induced vasoconstriction in vivo. Role of the mast cell and A3 adenosine receptor. Circ Res 78:627–634

    PubMed  CAS  Google Scholar 

  • Smail EH, Cronstein BN, Meshulam T, Esposito AL, Ruggeri RW, Diamond RD (1992) In vitro, Candida albicans releases the immune modulator adenosine and a second, high-molecular weight agent that blocks neutrophil killing. J Immunol 148: 3588–3595

    PubMed  CAS  Google Scholar 

  • Stewart AG, Harris T (1993) Adenosine inhibits platelet-activating factor, but not tumour necrosis factor-alpha-induced priming of human neutrophils. Immunology 78:152–158

    PubMed  CAS  Google Scholar 

  • Sullivan GW, Linden J, Hewlett EL, Carper HT, Hylton JB, Mandell GL (1990) Adenosine and related compounds counteract tumor necrosis factor-alpha inhibition of neutrophil migration: implication of a novel cyclic AMP-independent action on the cell surface. J Immunol 145:1537–1544

    PubMed  CAS  Google Scholar 

  • Suzuki H, Takei M, Nakahata T, Fukamachi H (1998) Inhibitory effect of adenosine on degranulation of human cultured mast cells upon cross-linking of Fc epsilon RI. Biochem Biophys Res Commun 242:697–702

    PubMed  CAS  Google Scholar 

  • Szabo C, Scott GS, Virag L, Egnaczyk G, Salzman AL, Shanley TP, Hasko G (1998) Suppression of macrophage inflammatory protein (MIP)-l alpha production and collagen-induced arthritis by adenosine receptor agonists. Br J Pharmacol 125: 379–387

    PubMed  CAS  Google Scholar 

  • Takagi H, King GL, Ferrara N, Aiello LP (1996a) Hypoxia regulates vascular endothelial growth factor receptor KDR/Flk gene expression through adenosine A2 receptors in retinal capillary endothelial cells. Invest Ophth Vis sci 37:1311— 1321

    Google Scholar 

  • Takagi H, King GL, Robinson GS, Ferrara N, Aiello LP (1996b) Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest Ophthalmol Vis Sci 37:2165–2176

    Google Scholar 

  • Thiel M, Bardenheuer H (1992) Regulation of oxygen radical production of human polymorphonuclear leukocytes by adenosine: the role of calcium. Pflugers Arch 420:522–528

    PubMed  CAS  Google Scholar 

  • Thiel M, Chambers JD, Chouker A, Fischer S, Zourelidis C, Bardenheuer H J, Arfors KE, Peter K (1996) Effect of adenosine on the expression of beta(2) integrins and L-selectin of human polymorphonuclear leukocytes in vitro. J Leukoc Biol 59:671–682

    PubMed  CAS  Google Scholar 

  • Thiel M, Chouker A (1995) Acting via A2 receptors, adenosine inhibits production of tumor necrosis factor-alpha of endotoxin-stimulated polymorphonuclear leukocytes. J Lab Clin Med 126:275–282

    PubMed  CAS  Google Scholar 

  • Van Belle H (1993) Nucleoside transport inhibition: a therapeutic approach to cardio-protection via adenosine? Cardiovascular Res 27:68–76

    Google Scholar 

  • van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates, via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    PubMed  Google Scholar 

  • van Calker D, Steber R, Klotz KN, Greil W (1991) Carbamazepine distinguishes between adenosine receptors that mediate different second messenger responses. E J Pharmacol. 206:285–290

    Google Scholar 

  • van Waeg G, Van den Berghe G (1991) Purine catabolism in polymorphonuclear neutrophils; phorbol myristate acetate-induced accumulation of adenosine owing to inactivation of extracellularly released adenosine deaminase. J Clin Invest 87:305–312

    PubMed  Google Scholar 

  • Vinten-Johansen J, Zhao ZQ, Sato H (1995) Reduction in surgical ischemic-reperfusion injury with adenosine and nitric oxide therapy. Ann Thorac Surg 60:852–857

    PubMed  CAS  Google Scholar 

  • Walker BA (1996) Effects of adenosine on guinea pig pulmonary eosinophils. Inflammation 20:11–21

    PubMed  CAS  Google Scholar 

  • Walker BA, Jacobson MA, Knight DA, Salvatore CA, Weir T, Zhou D, Bai TR (1997) Adenosine A3 receptor expression and function in eosinophils. Am J Respir Cell Mol Biol 16:531–537

    PubMed  CAS  Google Scholar 

  • Walker BAM, Cunningham TW, Freyer DR, Todd RF, III, Johnson KJ, Ward PA (1989) Regulation of superoxide responses of human neutrophils by adenine compounds. Independence of requirement for cytoplasmic granules. Lab Invest 61:515–521

    PubMed  CAS  Google Scholar 

  • Walker BAM, Hagenlocker BE, Douglas VK, Ward PA (1990) Effects of adenosine on inositol 1,4,5-trisphosphate formation and intracellular calcium changes in formyl-met-leu-phe-stimulated human neutrophils. J Leukoc Biol 48:281–283

    PubMed  CAS  Google Scholar 

  • Wollner A, Wollner S, Smith JB (1993) Acting via A2 receptors, adenosine inhibits the upregulation of Mac-1 (CD11b/CD18) expression on FMLP-stimulated neutrophils. Am J Resp Cell Mol Biol 9:179–185

    CAS  Google Scholar 

  • Xaus J, Mirabet M, Lloberas J, Soler C, Lluis C, Franco R, Celada A (1999) IFN-gamma up-regulates the A2B adenosine receptor expression in macrophages: a mechanism of macrophage deactivation. J Immunol 162:3607–3614

    PubMed  CAS  Google Scholar 

  • Yap JS, Montesinos MC, McCrary CT, Cronstein BN (1997) Theophylline reverses the effect of methotrexate on adjuvant arthritis: evidence that adenosine mediates the antiinflammatory effects of methotrexate. Arth Rheum 40:S98

    Google Scholar 

  • Zahler S, Becker BF, Raschke P, Gerlach E (1994) Stimulation of endothelial adenosine A1 receptors enhances adhesion of neutrophils in the intact guinea pig coronary system. Cardiovasc Res 28:1366–1372

    PubMed  CAS  Google Scholar 

  • Zalavary S, Bengtsson T (1998a) Adenosine inhibits actin dynamics in human neutrophils: evidence for the involvement of cAMP. Eur J Cell Biol 75:128–139

    Google Scholar 

  • Zalavary S, Bengtsson T (1998b) Modulation of the chemotactic peptide- and immunoglobulin G-triggered respiratory burst in human neutrophils by exogenous and endogenous adenosine. Eur J Pharmacol 354:215–225

    Google Scholar 

  • Zalavary S, Stendahl O, Bengtsson T (1994) The role of cyclic AMP, calcium and filamentous actin in adenosine modulation of Fc receptor-mediated phagocytosis in human neutrophils. Biochim Biophys Acta 1222:249–256

    PubMed  CAS  Google Scholar 

  • Zhao ZQ, Sato H, Williams MW, Fernandez AZ, Vinten-Johansen J (1996) Adenosine A2-receptor activation inhibits neutrophil-mediated injury to coronary endothelium. Am J Physiol. 271:H1456–H1464

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Montesinos, M., Cronstein, B. (2001). Role of P1 Receptors in Inflammation. In: Abbracchio, M.P., Williams, M. (eds) Purinergic and Pyrimidinergic Signalling II. Handbook of Experimental Pharmacology, vol 151 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56921-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56921-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67848-9

  • Online ISBN: 978-3-642-56921-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics