Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 150))

  • 293 Accesses

Abstract

It is close to 20 years since the term GABAB was first introduced to define a metabotropic GABA receptor with a pharmacological profile distinct from that of the ioHill and Bowery 1981). It was subsequently shown that binding of agonists to GABAB receptors is sensitive to guanyl nucleotides, indicating that GABAB receptors are coupled to G-proteins. Many of the physiological roles of GABAB receptors can be attributed to the regulation of G-protein gated Ca2+ and K+ channels (Lüscher et al. 1997; Poncer et al. 1997; Slesinger et al. 1997; Wu and Saggau 1997). Accordingly presynaptic GABAB receptor influence neurotransmission by suppression of neurotransmitter and neuropeptide release, presumably by diminution of a Ca2+ conductance. A Ca2+ independent interaction of GABAB receptors with the presynaptic secretion machinery was also proposed (Capogna et al. 1996). Postsynaptic GABAB receptors hyperpolarize neurons by activating an outward K+ current that underlies the late inhibitory postsynaptic potentials (IPSPs). Characteristically the late IPSP is slower in onset and has a prolonged duration as compared to the fast IPSP, which derives from the Cl-permeable GABAA receptors. Recent studies indicate that inwardly rectifying K+ channels of the Kir3 type (formerly GIRK) are prominent effectors of postsynaptic GABAB receptors. For example, the late IPSP evoked by L-baclofen, a selective GABAB receptor agonist, is largely absent in Kir3.2 knockout mice (Lüscher et al. 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bettler B, Kaupmann K, Bowery NG (1998) GABAB receptors: drugs meet clones. Curr Opin Neurobiol 8:345–350

    Article  PubMed  CAS  Google Scholar 

  • Bischoff S, Leonhard S, Reymann N, Schuler V, Felner A, Bittiger H, Shigemoto R, Kaupmann K, Bettler B (1999) Spatial distribution of GABABR1 Receptor mRNA and binding sites in the rat brain. J Comp Neurol 412:1–16

    Article  PubMed  CAS  Google Scholar 

  • Bonanno G, Fassio A, Schmid G, Severi P, Sala R, Raiteri M (1997) Pharmacologically distinct GABAB receptors that mediate inhibition of GABA and glutamate release in human neocortex. Br J Pharmacol 120:60–64

    Article  PubMed  CAS  Google Scholar 

  • Capogna M, Gahwiler BH, Thompson SM (1996) Presynaptic inhibition of calciumdependent and -independent release elicited with ionomycin, gadolinium, and alpha-latrotoxin in the hippocampus. J Neurophysiol 75:2017–2028

    PubMed  CAS  Google Scholar 

  • Chu DC, Albin RL, Young AB, Penney JB (1990) Distribution and kinetics of GABAB binding sites in rat central nervous system: a quantitative autoradiographic study. Neuroscience 34:341–357

    Article  PubMed  CAS  Google Scholar 

  • Couve A, Filippov AK, Connolly CN, Bettler B, Brown DA, Moss SJ (1998) Intracellular retention of recombinant GABAB receptors. J Biol Chem 273:26361–26367

    Article  PubMed  CAS  Google Scholar 

  • Cunningham MD, Enna SJ (1996) Evidence for pharmacologically distinct GABAB receptors associated with cAMP production in rat brain. Brain Res 720:220–224

    Article  PubMed  CAS  Google Scholar 

  • Deisz RA, Billard JM, Zieglgansberger W (1997) Presynaptic and postsynaptic GABAB receptors of neocortical neurons of the rat in vitro: differences in pharmacology and ionic mechanisms. Synapse 25:62–72

    Article  PubMed  CAS  Google Scholar 

  • Dutar P, Nicoll RA (1988) Pre- and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron 1:585–591

    Article  PubMed  CAS  Google Scholar 

  • Fritschy JM, Meskenaite V, Weinmann O, Honer M, Benke D, Möhler H (1999) GABAB-receptor splice variants GBla and GBlb in rat brain: developmental regulation, cellular distribution and extrasynaptic localization. Eur J Neurosci 11:761–768

    Article  PubMed  CAS  Google Scholar 

  • Galvez T, Joly C, Parmentier ML, Malitschek B, Kaupmann K, Kuhn R, Bittiger H, Froestl W, Bettler B, Pin J-P (1999) Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J Biol Chem 274:13362–13369

    Article  PubMed  CAS  Google Scholar 

  • Gehlert DR, Yamamura HI, Wamsley JK (1985) Gamma-aminobutyric acid B receptors in the rat brain: quantitative autoradiographic localization using [3H]-baclofen. Neurosci Lett 56:183–188

    Article  PubMed  CAS  Google Scholar 

  • Goei VL, Choi J, Ahn J, Bowlus CL, Raha-Chowdhury R, Gruen JR (1998) Human gamma-aminobutyric acid B receptor gene: Complementary DNA cloning, expression, chromosomal location, and genomic organization. Biol Psychiatry 44:659–666

    Article  PubMed  CAS  Google Scholar 

  • Grifa A, Totaro A, Rommens JM, Carella M, Roetto A, Borgato L, Zelante L, Gasparini P (1998) GABA (gamma-amino-butyric-acid) neurotransmission: Identification and fine mapping of the human GABAB receptor gene. Biochem Biophys Res Commun 250:240–245

    Article  PubMed  CAS  Google Scholar 

  • Hawrot E, Yuanyuan X, Shi Q-L, Norman D, Kirkitadze M, Barlow PN (1998) Demonstration of a tandem pair of complement protein modules in GABAB receptor la. FEBS Lett 432:103–108

    Article  PubMed  CAS  Google Scholar 

  • Hill DR, Bowery NG (1981) 3H-Baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290:149–152

    Article  PubMed  CAS  Google Scholar 

  • Isomoto S, Kaibara M, Sakurai-Yamashita Y, Nagayama Y, Uezono Y, Yano K, Taniyama K (1998) Cloning and tissue distribution of novel splice variants of the GABAB receptor. Biochem Biophys Res Commun 253:10–15

    Article  PubMed  CAS  Google Scholar 

  • Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao W-J, Johnson M, Gunwaldsen C, Huang L-Y, Tang C, Shen O, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C (1998) GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396:674–679

    Article  PubMed  CAS  Google Scholar 

  • Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386:239–246

    Article  PubMed  CAS  Google Scholar 

  • Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (1998a) GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687

    Article  PubMed  CAS  Google Scholar 

  • Kaupmann K, Schuler V, Mosbacher J, Bischoff S, Bittiger H, Heid J, Fröstl W, Leonhardt T, Pfaff T, Karschin A, Bettler B (1998b) Human GABAB receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proc Natl Acad Sci USA 95:14991–14996

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (1997) Differences between natural and recombinant G-protein coupled receptor systems with varying receptor/G-protein stoichiometry. Trends Pharmacol Sci 18:456–464

    PubMed  CAS  Google Scholar 

  • Koulen P, Malitschek B, Kuhn R, Bettler B, Wässle H, Brandstätter JH (1998) Presynaptic and postsynaptic localization of GABAB receptors in neurons of the rat retina. Eur J Neurosci 10:1446–1456

    Article  PubMed  CAS  Google Scholar 

  • Kuner R, Kohr G, Grunewald S, Eisenhardt G, Bach A, Kornau HC (1999) Role of heteromer formation in GABAB receptor function. Science 283:74–77

    Article  PubMed  CAS  Google Scholar 

  • Lüscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19:687–695

    Article  PubMed  Google Scholar 

  • Malitschek B, Rüegg D, Heid J, Kaupmann K, Bittiger H, Fröstl W, Bettler B, Kuhn R (1998) Developmental changes in agonist affinity at GABABR1 receptor variants in rat brain. Mol & Cell Neurosci 12:56–64

    Article  CAS  Google Scholar 

  • Malitschek B, Schweizer C, Keir M, Heid J, Froestl W, Kuhn R, Henley J, Pin J-P, Kaupmann K, Bettler B (1999) The N-terminal domain of GABAB receptors is sufficient to specify agonist and antagonist binding. Mol Pharmacol 56:448–454

    PubMed  CAS  Google Scholar 

  • Marshall FH, Jones KA, Kaupmann K, Bettler B (1999) GABAB receptors- the first 7TM heterodimers. Trends Pharmacol Sci 20:396–399

    Article  PubMed  CAS  Google Scholar 

  • Mintz IM, Bean BP (1993) GABAB receptor inhibition of P-type Ca2+ channels in central neurons. Neuron 10:889–898

    Article  PubMed  CAS  Google Scholar 

  • Morris SJ, Beatty DM, Chronwall BM (1998) GABABRla/Rlb-type receptor antisense deoxynucleotide treatment of melanotropes blocks chronic GABAB receptor inhibition of high-voltage-activated Ca2+ channels. J Neurochem 71:1329–1332

    Article  PubMed  CAS  Google Scholar 

  • Peters HC, Kämmer G, Volz A, Kaupmann K, Ziegler A, Bettler B, Epplen JT, Sander T, Riess O (1998) Mapping, genomic structure, and polymorphisms of the human GABA B R1 receptor gene: evaluation of its involvement in idiopathic generalized epilepsy. Neurogenetics 2:47–54

    Article  PubMed  CAS  Google Scholar 

  • Pfaff T, Malitschek B, Kaupmann K, Prézeau L, Pin JP, Bettler B, Karschin A (1999) Alternative splicing generates a novel isoform of the rat metabotropic GABABR1 receptor. Eur J Neurosci 11:2874–2882

    Article  PubMed  CAS  Google Scholar 

  • Poncer JC, McKinney RA, Gahwiler BH, Thompson SM (1997) Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron 18:463–472

    Article  PubMed  CAS  Google Scholar 

  • Sander T, Peters C, Kämmer G, Samochowiec J, Zirra M, Mischke A, Ziegler A, Kaupmann K, Bettler B, Epplen JT, Riess O (1999) Association analysis of exonic variants of the gene encoding the GABAB receptor and idiopathic generalized epilepsy. Am J Med Genet 88:305–310

    Article  PubMed  CAS  Google Scholar 

  • Slesinger PA, Stoffel M, Jan YN, Jan LY (1997) Defective g-amino butyric acid type B receptor-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from weaver and GIRK2 null mutant mice. Proc Natl Acad Sci USA 94:12210–12217

    Article  PubMed  CAS  Google Scholar 

  • Towers S, Meoni P, Billinton A, Kaupmann K, Bettler B, Urban L, Bowery NG, Spruce A (1997) GABAB receptor expression in spinal cord and dorsal root ganglia of neuropathic rats. Society for Neuroscience, Abstract 23:(1) 955

    Google Scholar 

  • Turgeon SM, Albin RL (1993) Pharmacology, distribution, cellular localization, and development of GABAB binding in rodent cerebellum. Neuroscience 55:311–323

    Article  PubMed  CAS  Google Scholar 

  • White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH (1998) Heteromerization is required for the formation of a functional GABAB receptor. Nature 396:679–682

    Article  PubMed  CAS  Google Scholar 

  • Wilkin GP, Hudson AL, Hill DR, Bowery NG (1981) Autoradiographic localization of GABAB receptors in the cerebellum. Nature 294:584–587

    Article  PubMed  CAS  Google Scholar 

  • Wojcik WJ, Neff NH (1984) γ-Aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain and in the cerebellum these receptors may be associated with granule cells. Mol Pharmacol 25:24–28

    PubMed  CAS  Google Scholar 

  • Wu LG, Saggau P (1997) Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci 20:204–212

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Shen W, Slaughter MM (1997) Two metabotropic gamma-aminobutyric acid receptors differentially modulate calcium currents in retinal ganglion cells. J Gen Physiol 110:45–58

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bettler, B., Kaupmann, K. (2001). Structure of GABAB Receptors. In: Möhler, H. (eds) Pharmacology of GABA and Glycine Neurotransmission. Handbook of Experimental Pharmacology, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56833-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56833-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63191-7

  • Online ISBN: 978-3-642-56833-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics