Advances in High-Performance Computing: Multigrid Methods for Partial Differential Equations and its Applications

  • Peter Bastian
  • Klaus Johannsen
  • Stefan Lang
  • Sandra Nägele
  • Christian Wieners
  • Volker Reichenberger
  • Gabriel Wittum
  • Christian Wrobel
Conference paper

Abstract

The program package UG provides a software platform for discretizing and solving partial differential equations. It supports high level numerical methods for unstructured grids on massively parallel computers. Various applications of complex up to real-world problems have been realized, like Navier-Stokes problems with turbulence modeling, combustion problems, two-phase flow, density driven flow and multi-component transport in porous media. Here we report on new developments for a parallel algebraic multigrid solver and applications to an eigenvalue solver, to flow in porous media and to a simulation of Navier-Stokes equations with turbulence modeling.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Aziz and A. Settari. Petroleum Reservoir Simulation. Elsevier, 1979.Google Scholar
  2. 2.
    E. O. Frind B. H. Kueper. An overview of immiscible fingering in porous media. J. of Contaminant Hydrology, 2:95–110, 1988.CrossRefGoogle Scholar
  3. 3.
    R. E. Bank and C. Wagner. Multilevel ILU decomposition. Numerische Mathematik, 82:543–576, 1999.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert, and C. Wieners. UG-a flexible software toolbox for solving partial differential equations. Computing and Visualization in Science, 1:27–40, 1997.MATHCrossRefGoogle Scholar
  5. 5.
    P. Bastian, K. Birken, K. Johannsen, S. Lang, V. Reichenberger, C. Wieners, G. Wittum, and C. Wrobel. A parallel software-platform for solving problems of partial differential equations using unstructured grids and adaptive multigrid methods. In E. Krause and W. Jäger, editors, High performance computing in science and engineering, pages 326–339. Springer, 1999.Google Scholar
  6. 6.
    P. Bastian, K. Birken, K. Johannsen, S. Lang, V. Reichenberger, C. Wieners, G. Wittum, and C. Wrobel. Parallel solutions of partial differential equations with adaptive multigrid methods on unstructured grids. In High performance computing in science and engineering II, 1999. submitted.Google Scholar
  7. 7.
    P. Bastian and R. Helmig. Efficient fully-coupled solution techniques for two-phase flow in porous media. Advances in Water Resources Research, 23:199–216, 1999.CrossRefGoogle Scholar
  8. 8.
    J. Bear and Y. Bachmat. Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic Publishers, 1991.Google Scholar
  9. 9.
    H. Behnke, U. Mertins, M. Plum, and C. Wieners. Eigenvalue inclusions via domain decomposition. 1999. submitted.Google Scholar
  10. 10.
    E. Fein(ed). d3f-Ein Programmpaket zur ModelIierung von Dichteströmungen. GRS, Braunschweig, GRS-139, ISBN 3-923875-97-5, 1998.Google Scholar
  11. 11.
    P. Frolkovic. Consistent velocity approximation for density driven flow and transport. Technical report, Advanced Computational Methods in Engineering, Ghent 1998, to be published.Google Scholar
  12. 12.
    M. Germano. Turbulence: the filtering approach. Journal of Fluid Mechanics, 238:325–336, 1992.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    R. K. Gjertsen Jr., M. T. Jones, and P. E. Plassmann. Parallel heuristics for improved, balanced graph colorings. Journal of Parallel and Distributed Computing, to appear.Google Scholar
  14. 14.
    E. Hairer and G. Wanner. Solving ordinary differential equations II. Springer-Verlag, Berlin, 1991.MATHCrossRefGoogle Scholar
  15. 15.
    B. Hendrickson and R. Leland. The chaco user’s guide version 1.0. Technical Report SAND 93-2339, Sandia National Laboratory, 1993.Google Scholar
  16. 16.
    Ekkehard O. Holzbecher. Modeling Density-Driven Flow in Porous Media. Springer-Verlag, Berlin, Heidelberg, 1998.CrossRefGoogle Scholar
  17. 17.
    K. Johannsen. Modified SSOR-a smoother for non M-matrices. in preparation.Google Scholar
  18. 18.
    K. Johannsen, W. Kinzelbach, S. Oswald, and G. Wittum. Numerical simulation of density driven flow in porous media. in preparation.Google Scholar
  19. 19.
    A. Leijnse. Three-dimensional modeling of coupled flow and transport in porous media. PhD thesis, University of Notre Dame, Indiana, 1992.Google Scholar
  20. 20.
    S. E. Oswald, M. Scheidegger, and W. Kinzelbach. A three-dimensional physical benchmark test for verification of variable-density driven flow in time. Water resources research, to be published.Google Scholar
  21. 21.
    W. Rodi, J. H. Ferziger, M. Breuer, and M. Pourquié. Status of large eddy simulation: Results of a workshop. Journal of Fluids Engineering, 119:248–262, 1997.CrossRefGoogle Scholar
  22. 22.
    M. Rumpf and A. Wierse. Grape, eine objektorientierte Visualisierungs-und Numerikplattform. Informatik Forschung und Entwicklung, 7:145–151, 1992.Google Scholar
  23. 23.
    G. E. Schneider and M. J. Raw. Control volume finite-element method for heat transfer and fluid flow using colocated variables. Numerical Heat Transfer, 11:363–390, 1987.MATHCrossRefGoogle Scholar
  24. 24.
    J. Smagorinsky. General circulation experiments with the primitive equations i. the basic experiment. Monthly Weather Review, 91:99–164, 1963.CrossRefGoogle Scholar
  25. 25.
    Christian Wagner. On the algebraic construction of multilevel transfer operators. Computing, 2000, to appear.Google Scholar
  26. 26.
    C. Wieners. The implementation of adaptive multigrid methods for finite elements. Technical report, Universität Stuttgart, SFB 404 Preprint 97/12, 1997.Google Scholar
  27. 27.
    C. Wieners. Multigrid methods for Prandtl-Reuß-plasticity. Numer. Lin. Alg. Appl., 6:457–478, 1999.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Peter Bastian
    • 1
  • Klaus Johannsen
    • 1
  • Stefan Lang
    • 1
  • Sandra Nägele
    • 1
  • Christian Wieners
    • 1
  • Volker Reichenberger
    • 1
  • Gabriel Wittum
    • 1
  • Christian Wrobel
    • 1
  1. 1.IWR/Technical SimulationUniversity of HeidelbergHeidelbergGermany

Personalised recommendations