High-Reynolds Number Solutions of Incompressible Navier-Stokes Equations using Vectorial Operator Splitting

  • Rossitza Marinova
  • Christo Christov
  • Tchavdar Marinov

Abstract

The steady incompressible Navier-Stokes equations in primitive variables are solved by implicit vectorial operator-splitting. The method allows for complete coupling of the boundary conditions. Conservative approximations for the advective terms are employed on irregular staggered grids. The technique is used here for solving two benchmark problems. Numerical solutions for the flow in a lid-driven rectangular cavity with aspect ratio two (up to Re = 6000) and for the flow over backward-facing step in a channel (up to Re = 1400) on appropriate grids are presented.

Keywords

Reynolds Number Computational Fluid Dynamics Advective Term Rectangular Cavity Richardson Extrapolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.-H. Bruneau, C. Jouron: J. Comput. Phys. 89, pp. 389–413 (1990)ADSMATHCrossRefGoogle Scholar
  2. 2.
    C. I. Christov, R. S. Marinova: ‘Implicit vectorial operator splitting for incompressible Navier-Stokes equations in primitive variables’. Submitted to: Comput. Methods Appl. Mech. Engn.Google Scholar
  3. 3.
    C. I. Christov, R. S. Marinova: ‘Implicit scheme for Navier-Stokes equations in primitive variables via vectorial operator splitting’. In: Notes on Numer. Fluid Mech, 62, ed. by M. Griebel et al. (Vieweg, Wiesbaden 1998) pp. 251–259Google Scholar
  4. 4.
    J. Douglas: SIAM Journal 3, pp. 42–65 (1955)MATHGoogle Scholar
  5. 5.
    D. Gartling: Int. J. Numer. Meth. Fluids 11, pp. 953–967 (1990)CrossRefGoogle Scholar
  6. 6.
    O. Goyon: Comput. Meth. Appl. Mech. Engrg. 130, pp. 319–355 (1996)ADSMATHCrossRefGoogle Scholar
  7. 7.
    P. M. Gresho et al: Int. J. Numer. Meth. Fluids 17, pp. 501–541 (1993)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    A. D. Henshaw: J. Comp. Phys. 113, pp. 13–35 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Jayant Keskar, D. A. Lyn: Int. J. Numer. Meth. Fluids 29, pp. 411–427 (1999)MATHCrossRefGoogle Scholar
  10. 10.
    N. N. Yanenko: Method of fractional steps (Gordon and Breach, New York, 1971)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Rossitza Marinova
    • 1
  • Christo Christov
    • 2
  • Tchavdar Marinov
    • 3
  1. 1.Varna Free UniversityVarnaBulgaria
  2. 2.University of Louisiana at LafayetteLafayetteUSA
  3. 3.Saitama Institute of TechnologyOkabe, SaitamaJapan

Personalised recommendations