Skip to main content

Motorische Steuerung bei Invertebraten

  • Chapter
Neurowissenschaft

Part of the book series: Springer-Lehrbuch ((SLB))

  • 1351 Accesses

Zusammenfassung

Auf der Erde existieren 10 bis 35, vielleicht sogar 50 Millionen verschiedene Tierarten. Nur etwa 0,2 bis 1% (je nach Schätzung) davon sind Wirbeltiere, der Rest Wirbellose (Invertebraten), darunter insbesondere Gliederfüßler (Arthropoden). Ihr großer evolutiver Erfolg beruht auf strukturellen und physiologischen Anpassungen, welche höchst adaptives Verhalten ermöglichen. Von herausragender Bedeutung sind hierbei Leistungen des Nervensystems auf alien Ebenen des zentralen, sensorischen und motorischen Bereichs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Lehr- und Handbücher

  1. Bässler U (1983) Neural basis of elementary behavior in stick insects. Springer, Heidelberg (Studies in brain function, vol 10)

    Book  Google Scholar 

  2. Barnes WJP, Gladden MH (eds) (1985) Feedback and motor control in invertebrates and vertebrates. Croom Helm, London

    Google Scholar 

  3. Gewecke M, Wendler G (eds) (1985) Insect locomotion. Parey, Hamburg

    Google Scholar 

  4. Katz PS (ed) (1999) Beyond neurotransmission. Neuromodulation and its importance for information processing. Oxford Univ Press, Oxford

    Google Scholar 

  5. Roberts A, Roberts BL (eds) (1983) Neural origin of rhythmic movements. Cambridge University Press, Cambridge

    Google Scholar 

  6. Selverston AI (ed) (1985) Model neural networks and behavior. Plenum, New York

    Google Scholar 

Einzel- und Übersichtsarbeiten

  1. Bässler U, Btischges A (1990) Interneurones participating in the „active reaction“ in stick insects. Biol Cybern 62:529–538

    Article  Google Scholar 

  2. Bargmann CI (1993) Genetic and cellular analysis of behavior in C. elegans. Annu Rev Neurosci 16:47–71

    Article  PubMed  CAS  Google Scholar 

  3. Burrows M (1992) Local circuits for the control of leg movements in an insect. TINS 15:226–232

    PubMed  CAS  Google Scholar 

  4. Burrows M (1994) The influence of mechanosensory signals on the control of leg movements in an insect. Fortschr Zool 39:145–165

    Google Scholar 

  5. Clarac F, Libersat F, Pflüger HJ, Rathmayer W (1987) Motor pattern analysis in the shore crab (Carcinus maenas) walking freely in water and on land. J Exp Biol 133:395–414

    Google Scholar 

  6. Drewes CD (1984) Escape reflexes in earthworms and other annelids. In: Eaton RC (ed) Neural mechanisms of startle behavior. Plenum, New York, pp 43–91

    Chapter  Google Scholar 

  7. Edwards DH, Heitler WJ, Krasne FB (1999) Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish. TINS 22:153–161

    PubMed  CAS  Google Scholar 

  8. Friesen WO (1989) Neuronal control of leech swimming movements. In: Jacklet JW (ed) Neuronal and cellular oscillators. Dekker, New York, pp 269–316

    Google Scholar 

  9. Geraerts WPM, ter Maat A, Vreugdenhill E (1988) The peptidergic neuroendocrine control of egg-laying behavior in Aplysia and Lymnaea. In: Laufer H, Downer R (eds) Endocrinology of selected invertebrate types. Liss, New York, pp 141–231

    Google Scholar 

  10. Getting PA (1983) Neural control of swimming in Tritonia. Symp Soc Exp Biol 37:89–128

    PubMed  CAS  Google Scholar 

  11. Getting PA, Dekin MS (1985) Tritonia swimming. A model system for integration within rhythmic motor systems. In: Selverston AI (ed) Model neural networks and behavior. Plenum, New York, pp 3–20

    Chapter  Google Scholar 

  12. Harris-Warrick RM, Kravitz EA (1984) Cellular mechanisms for modulation of posture by octopamine and serotonin in the lobster. J Neurosci 4:1976–1993

    PubMed  CAS  Google Scholar 

  13. Heide G (1983) Neural mechanisms of flight control in Diptera. In: Nachtigall W (ed) Biona report 2. Fischer, Stuttgart, pp 35–52

    Google Scholar 

  14. Heitler WJ (1984) The control of rhythmic limb movements in Crustacea. Symp Soc Exp Biol 37:350–382

    Google Scholar 

  15. Katz P, Frost W (1996) Intrinsic neuromodulation: altering neuronal circuits from within. TINS 19:54–61

    PubMed  CAS  Google Scholar 

  16. Kristan WB (1983) The neurobiology of swimming in the leech. TINS 6:84–88

    Google Scholar 

  17. Libersat F, Clarac F, Zill S (1987) Force-sensitive mechanoreceptors of the dactyl of the crab: single-unit responses during walking and evaluation of function. J Neurophysiol 57:1618–1647

    PubMed  CAS  Google Scholar 

  18. Marder E, Richards KS (1999) Development of the peptidergic modulation of a rhythmic pattern generating network. Brain Res 848:35–44

    Article  PubMed  CAS  Google Scholar 

  19. Mayeri E, Rothman BS (1985) Neuropeptides and the control of egg-laying behavior in Aplysia. In: Selverston AI (ed) Model neural networks and behavior. Plenum, New York, pp 285–301

    Chapter  Google Scholar 

  20. Nachtigall W (1989) Mechanics and aerodynamics of flight. In: Goldsworthy GH, Wheeler CH (eds) Insect flight. CRC Press, Boca Raton, pp 1–29

    Google Scholar 

  21. Otis TS, Gilly WF (1990) Jet-propelled escape in the squid Loligo opalescens: concerted control by giant and non-giant motor axon pathways. Proc Natl Acad Sci USA 87:2911–2915

    Article  PubMed  CAS  Google Scholar 

  22. Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annu Rev Neurosci 16:265–297

    Article  PubMed  CAS  Google Scholar 

  23. Rathmayer W (1990) Inhibition through neurons of the common inhibitory type (CI-neurons) in crab muscles. In: Wiese K et al. (eds) Frontiers in crustacean neurobiology. Birkhäuser, Basel, pp 271–278 (Advances in life sciences)

    Google Scholar 

  24. Rathmayer W, Erxleben C, Djokaj S, Gaydukov A, Kreißl S, Weiss T (2001) Antagonistic modulation of neuromuscular parameters in crustaceans by the peptides proctolin and allatostatin, contained in identified motor neurons. In: Wiese K (ed) Crustacean Nervous Systems. Springer, Berlin

    Google Scholar 

  25. Rathmayer W, Maier L (1987) Muscle fiber types in crabs: studies on single identified fibers. Am Zool 27:1067–1077

    Google Scholar 

  26. Reichert H, Rowell CHF (1986) Neuronal circuits controlling flight in the locust: how sensory information is processed for motor control. TINS 9:281–283

    Google Scholar 

  27. Selverston AI (1993) Neuromodulatory control of rhythmic behaviors in invertebrates. Int Rev Cytol 147:1–24

    Article  PubMed  CAS  Google Scholar 

  28. Siegler MV, Burrows M (1983) Spiking local interneurons as primary integrators of mechanosensory information in the locust. J Neurophysiol 50:1281–1295

    PubMed  CAS  Google Scholar 

  29. Stent GS, Kristan WB (1981) Neural circuits generating rhythmic movements. In: Muller KJ, Nicholls JG, Stent GS (eds) Neurobiology of the leech. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 113–146

    Google Scholar 

  30. Susswein AJ, Byrne JH (1988) Identification and characterization of neurons initiating patterned neural activity in the buccal ganglion of Aplysia. J Neurosci 8:2049–2061

    PubMed  CAS  Google Scholar 

  31. White JG, Southgate E, Thomson JN (1992) Mutations in the Caenorhabditis elegans unc-4 gene alter the synaptic input to ventral cord motor neurons. Nature 355:838–84

    Article  PubMed  CAS  Google Scholar 

  32. Wisser A, Nachtigall W (1991) Biomechanical aspects of the wing joints in flies, especially in Calliphora erythrocephala. In: Schmidt-Kittler N, Vogel K (eds) Constructional morphology and evolution. Springer, Berlin, pp 193–207

    Chapter  Google Scholar 

  33. Wolf H (1990) Activity patterns of inhibitory motoneurones and their impact on leg movement in tethered walking locusts. J Exp Biol 152:281–304

    Google Scholar 

  34. Wolf H, Pearson K (1988) Proprioceptive input patterns elevator activity in the locust flight system. J Neurophysiol 59:1831–1853

    PubMed  CAS  Google Scholar 

  35. Wyman RJ, Thomas JB, Salkoff L, King DG (1984) The Drosophila giant fiber system. In: Eaton RC (ed) Neural mechanisms of startle behavior. Plenum, New York, pp 133–161

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rathmayer, W. (2001). Motorische Steuerung bei Invertebraten. In: Dudel, J., Menzel, R., Schmidt, R.F. (eds) Neurowissenschaft. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56497-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56497-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62534-3

  • Online ISBN: 978-3-642-56497-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics