Advertisement

Biochemical Modification of Titanium Surfaces

  • Shou-Jun Xiao
  • Gregory Kenausis
  • Marcus Textor
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Surfaces play an important role in the response of the biological environment to the artificial material device. One reason is the fact that the physical, chemical and biochemical properties of the implant surface control performance-relevant processes such as protein adsorption, cell-surface interaction and cell/tissue development at the interface between the body and the biomaterial [1]. This is true in general and for the diverse applications of titanium discussed in this book. Different aspects of this interaction are treated in different chapters: the role of inorganic (e.g. oxide) surface films, in Chaps. 7 and 8; the importance of surface topography for cell-surface interaction and for osteointegration, in Chaps. 11,15 and 17, respectively; and the role of surface chemistry in the interaction with blood, in Chap. 14.

Keywords

Calcium Phosphate Simulated Body Fluid Protein Adsorption Titanium Surface Titanium Oxide Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (1996) Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Bearinger JP, Castner DG, Healy KE (1998) Biomolecular modifications of p(AAm-co-EG/AA) IPN’s supports osteoblast adhesion and phenotypic expression. J Biomater Sci: Polymer Edition 9(7):629–652CrossRefGoogle Scholar
  3. 3.
    Bearinger JP, Castner DG, Golledge SL, Rezania A, Hubchak S, Healy KE (1997) P(AAm-co-EG) interpenetrating networks grafted to oxide surfaces: Surface characterization, protein adsorption, and cell detachment studies. Langmuir 13:5175–5183CrossRefGoogle Scholar
  4. 4.
    Kenausis GL, Vörös J, Elbert DL, Huang N, Hofer R, Ruiz-Taylor L, Textor M, Hubbell JA, Spencer ND (2000) Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phy Chem B 104(14):3298–3309CrossRefGoogle Scholar
  5. 5.
    Textor M (unpublished)Google Scholar
  6. 6.
    Finklea HO, Murry RW (1979) Chemically modified electrodes. 12. Effects of silanization on titanium dioxide electrodes. J Phys Chem 83:353–358CrossRefGoogle Scholar
  7. 7.
    Plueddemann EP, Leyden DE (1991) Silane Coupling Agents. Plenum Press, New YorkGoogle Scholar
  8. 8.
    Cass T, Ligler FS (1999) Immobilized biomolecules in analysis. In: The Practical Approach Series. Oxford University Press, OxfordGoogle Scholar
  9. 9.
    Hong HG, Bohn P W, Sligar SG (1993) Optical determination of surface density in oriented metalloprotein nanostructures. Anal Chem 65:1635–1638CrossRefGoogle Scholar
  10. 10.
    Hong HG, Jiang M, Sliger SG, Bohn PW (1994) Cysteine-specific surface tethering of genetically engineered cytochromes for fabrication of metalloprotein nanostructures. Langmuir 10:153–158CrossRefGoogle Scholar
  11. 11.
    Lee GU, Chrisey LA, O’Ferrall CE, Pilloff DE, Turner NH, Colton RJ (1996) Chemically-specific probes for the atomic force microscope. Israel J Chem 36:81–87Google Scholar
  12. 12.
    Chrisey LA, Lee GU, O’Ferrall CE (1996) Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucleic Acids Res 24:3031–3039CrossRefGoogle Scholar
  13. 13.
    Xiao SJ, Textor M, Spencer ND, Sigrist H (1998) Covalent attachment of cell-adhesive pep-tides containing (arg-gly-asp) sequences to titanium surfaces. Langmuir 14:5507–5516CrossRefGoogle Scholar
  14. 14.
    Xiao SJ, Textor M, Spencer ND, Wieland M, Keller B, Sigrist H (1997) Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment. J Mater Sci: Mater Med 8:867–872CrossRefGoogle Scholar
  15. 15.
    Lee YW, Reed-Mundell J, Sukenik CN, Zull JE (1993) Electrophilic siloxane-based self-assembled monolayers for thiol-mediated anchoring of peptides and proteins. Langmuir 9:3009–3014CrossRefGoogle Scholar
  16. 16.
    Zull JE, Reed-Mundell J, Lee Y W, Vezenov D, Ziats NP, Anderson JM, Sukenik CN (1994) Problems and approaches in covalent attachment of peptides and proteins to inorganic surfaces for biosensor applications. J Ind Microbiol 13:137–143CrossRefGoogle Scholar
  17. 17.
    Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, Mckee MD (1998) Chemical modification of titanium surfaces for covalent attachment of biomolecules. J Biomed Mater Res 40:324–335CrossRefGoogle Scholar
  18. 18.
    Puleo DA, Nanci A (1999) Understanding and controlling the bone-implant interface. Biomaterials 20:2311–2321CrossRefGoogle Scholar
  19. 19.
    Dee KC, Rueger DC, Andersen TT, Bizios R (1996) Conditions which promote mineralization at the bone-implant interface: a model in vitro study. Biomaterials 17:209–215CrossRefGoogle Scholar
  20. 20.
    Dee KC, Andersen TT, Bizioz B (1997) Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. J Biomed Mater Res 37:9–19CrossRefGoogle Scholar
  21. 21.
    Clemence JF, Ranieri JP, Aebischer P, Sigrist H (1995) Photoimmobilization of a bioactive laminin fragment and pattern-guided selective neuronal cell attachment. Bioconjugate Chem 6:411–417CrossRefGoogle Scholar
  22. 22.
    Collioud A, Clemence J-F, Sanger M, Sigrist H (1993) Oriented and covalent immobilization of target molecules to solid supports: synthesis and application of a light-activatable and thiol-reactive crosslinking reagent. Bioconjugate Chem 4:528–536CrossRefGoogle Scholar
  23. 23.
    Weber M, Vasella A, Textor M, Spencer ND (1998) Glycosylidene carbenes part 27: Glucosi-dation of titanium dioxide with 1-aziglucoses: Preparation and characterization of modified titanium dioxide surfaces. Helv Chim Acta 81:1359–1372CrossRefGoogle Scholar
  24. 24.
    Hypolite CL, Mclernon TL, Adams DN, Chapman KE, Herbert CB, Huang CC, Distefano MD, Hu W-S (1997) Formation of microscale gradients of protein using heterobifunctional photolinkers. Bioconjugate Chem 8(5) 658–663CrossRefGoogle Scholar
  25. 25.
    Herbert CB, Mclernon TL, Hypolite CL, Adams DN, Pikus L, Huang CC, Fields GB, Letouneau PC, Distefano MD, Hu W-S (1997) Micropatterning gradients and controlling surface densities of photoactivatable biomolecules on self-assembled monolayers of oligo(ethylene glycol) alkanethiolates. Chem Biol 4(10):731–737CrossRefGoogle Scholar
  26. 26.
    Erdtmann M, Keller R, Baumann H (1994) Photochemical immobilization of heparin, der-matan sulphate, dextran sulphate and endothelial cell surface heparin sulphate onto cellulose membrane for the preparation of a thrombogenic and antithrombogenic polymers. Biomaterials 15:1043–1049CrossRefGoogle Scholar
  27. 27.
    Worch H, Scharnweber D (1998) Biologisierte Titanwerkstoffe. Z. Metallkd. 89 (2): 153–163Google Scholar
  28. 28.
    Scotchford CA, Cooper E, Leggett GJ, Downes S (1998) Growth of human osteoblast-like cells on alkanethiol on gold self-assembled monolayers: The effect of surface chemistry. J Biomed Mater Res 41:431–442CrossRefGoogle Scholar
  29. 29.
    Tanahashi M, Matsuda T (1997) Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res 34 (3):305–315CrossRefGoogle Scholar
  30. 30.
    Ulman A (1990) Self-assembled monolayers of alkyltrichlorosilanes: building blocks for future organic materials. Adv Mater 2(12):573–582CrossRefGoogle Scholar
  31. 31.
    Folkers JP, Gorman CB, Laibinis PE, Buchholz S, Whitesides GM (1995) Self-assembled monolayers of long-chain hydroxamic acids on the native oxide of metals. Langmuir 11:813–824CrossRefGoogle Scholar
  32. 32.
    Aronoff YG, Chen B, Lu G, Seto C, Schwartz J, Bernasek SL (1997) Stabilization of self-assembled monolayers of carboxylic acids on native oxides of metals. J Am Chem Soc 119(2):259–262CrossRefGoogle Scholar
  33. 33.
    Woodward JT, Ulman A, Schwartz DK (1996) Self-assembled monolayer growth of octade-cylphosphonic acid on mica. Langmuir 12:3626–3629CrossRefGoogle Scholar
  34. 34.
    Maege I, Jaehne E, Henke A, Adler HJP, Bram C, Jung C, Stratmann M (1998) Ultrathin organic layers for corrosion protection. Macromol Symp 126:7–24CrossRefGoogle Scholar
  35. 35.
    Brovelli D, Hähner G, Ruiz L, Hofer R, Kraus G, Waldner A, Schlösser J, Oroszlan P, Ehrat M, Spencer ND (1999) Highly oriented, self-assembled alkanephosphate monolayers on tan-talum (V) oxide surfaces. Langmuir 15:4324–4327CrossRefGoogle Scholar
  36. 36.
    Textor M, Ruiz L, Hofer R, Rossi A, Feldman K, Hähner G, Spencer ND (2000) Structural chemistry of self-assembled monolayers of octadecylphosphoric acid on tantalum oxide surfaces. Langmuir 16(7):3257–3271CrossRefGoogle Scholar
  37. 37.
    Hofer R, Textor M, Spencer ND (2000) Imaging of surface heterogeneity by the microdroplet condensation technique. Langmuir (submitted)Google Scholar
  38. 38.
    Hofer R, Textor M, Spencer ND (2000) Alkyl phosphate monolayers, self-assembled from aqueous solution onto metal oxide surfaces. Langmuir (submitted)Google Scholar
  39. 39.
    Hench LL, Wilson J (1993) An Introduction to Bioceramics. World Scientific, SingaporeCrossRefGoogle Scholar
  40. 40.
    Hench LL (1994) Theory and clinical applications in bioceramics. In: Anderson OH, Yli-Urpo A (eds) Bioactive Ceramics. Butterworth-Heinemann, Oxford, pp 3–14Google Scholar
  41. 41.
    Horowitz E, Parr JE Characterization and Performance of Calcium Phosphate Coatings for Implants, ASTM STP 1196. American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  42. 42.
    Hanawa T (1991) Titanium and its oxide film: a substrate for formation of apatite. In: Davies JE (ed) The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 49–61Google Scholar
  43. 43.
    Hanawa T, Ota M (1991) Calcium phosphate naturally formed on titanium in electrolytic solution. Biomaterials 12:767–774CrossRefGoogle Scholar
  44. 44.
    Hanawa T, Asami K, Asaoka A (1998) Repassivation of titanium and surface oxide film regenerated in simulated bioliquids. J Biomed Mater Res 40:530–538CrossRefGoogle Scholar
  45. 45.
    Barrere F, Layrolle P, Van Blitterswijk CA, de Groot K (1999) Biomimetic calcium phosphate coatings on Ti6A14V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+and HCO3 -. Bone 25(2 Suppl):107S–111SGoogle Scholar
  46. 46.
    Kim HM, Kim Y, Park SJ, Rey C, Lee H, Glimcher MJ, Ko JS (2000) Thin film of low-crystalline calcium phosphate apatite formed at low temperatures. Biomaterials 21(11):1129–1134CrossRefGoogle Scholar
  47. 47.
    Feng QL, Ciu FZ, Wang H, Kim TN, Kim JO (2000) Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH treatment. J Cryst Growth 210(4):735–740CrossRefGoogle Scholar
  48. 48.
    Wen HB, De Wijn JR, De Groot K (1998) Preparation of calcium phosphate coatings on titanium implant materials by simple chemistry. J Biomed Mater Res 41(2):227–236CrossRefGoogle Scholar
  49. 49.
    Hanawa T, Kon M, Ukai H, Murakami K, Miyamoto Y, Asaoka K (1997) Surface modification of titanium in calcium-ion-containing solutions. J Biomed Mater Res 34(3):273–278CrossRefGoogle Scholar
  50. 50.
    Ohtsuki C, Ida H, Hayakawa S, Osaka A (1997) Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. J Biomed Mater Res 35:39–47CrossRefGoogle Scholar
  51. 51.
    Hanawa T, Murakami K, Kihara S (1994) Calcium phosphate precipitation on calcium-ion-implanted titanium in electrolyte. In: Horowitz E, Parr JE (eds) Characterization and Performance of Calcium Phosphate Coatings for Implants. ASTM STP 1196. American Society for Testing and Materials, Philadelphia, pp 170–184CrossRefGoogle Scholar
  52. 52.
    Hanawa T, Ukai H, Murakami K (1993) X-ray photoelectron spectroscopy of calcium-ion-implanted titanium. J Electron Spectrosc Relat Phenom 63:347–354CrossRefGoogle Scholar
  53. 53.
    Hanawa H, Kamiura Y, Yamamoto S, Kohgo T, Amamiya A, Ukai H, Murakami K, Asaoka K (1997) Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J Biomed Mater Res 36:131–136CrossRefGoogle Scholar
  54. 54.
    Ishizawa H, Ogino M (1999) Hydrothermal precipitation of hydroxyapatite on anodic titanium oxide films containing Ca and P. J Mater Sci 34(23):5893–5898CrossRefGoogle Scholar
  55. 55.
    Ishizawa H, Fujino M, Ogino M (1997) Histomorphometric evaluation of the thin hydroxya-patite layer formed through anodization followed by hydrothermal treatment. J Biomed Mater Res 35(2): 199–206CrossRefGoogle Scholar
  56. 56.
    Ishizawa H, Ogino M (1996) Thin hydroxyapatite layers formed on porous titanium using electrochemical and hydrothermal reaction. J Mater Sci 31(23):6279–6284CrossRefGoogle Scholar
  57. 57.
    Ishizawa H, Fujino M, Ogino M (1995) Mechanical and histological investigation of hydro-thermally treated and untreated anodic titanium-oxide films containing Ca and P. J Biomed Mater Res 29(11):1459–1468CrossRefGoogle Scholar
  58. 58.
    Ishizawa H, Ogino M (1995) Characterization of thin hydroxyapatite layers formed on anodic titanium-oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 29(9):1071–1079CrossRefGoogle Scholar
  59. 59.
    Ishizawa H, Ogino M (1995) Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res 29(l):65–72CrossRefGoogle Scholar
  60. 60.
    Fini M, Cigada A, Rondelli G, Chiesa R, Giardino R, Giavaresi G, Aldini NN, Torricelli P, Vicentini B (1999) In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium. Biomaterials 20(17): 1587–1594CrossRefGoogle Scholar
  61. 61.
    Han Y, Xu KW, Lu JA, Wu Z (1999) The structural characteristics and mechanical behaviors of nonstoichiometric apatite coatings sintered in air atmosphere. J Biomed Mater Res 45(3):198–203CrossRefGoogle Scholar
  62. 62.
    Schreckenbach J, Schlottig F, Textor M, Spencer ND, Marx G (1999) Characterization of anodic spark-converted titanium surfaces for biomedical applications. J Mater Sci: Mater Med 10(8):453–457CrossRefGoogle Scholar
  63. 63.
    Pou J, Arias JL, Mayor MB, Leon B, Perez-Amor M (2000) Application of calcium phosphate coatings produced by pulsed laser deposition to osteointegratable devices. Proc Laser Microfabrication Conf. ICALEO ’99:67–76Google Scholar
  64. 64.
    Cleries L, Fernandez-Pradas JM, Morenza JL (2000) Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation. Biomaterials 21(18):1861–1865CrossRefGoogle Scholar
  65. 65.
    Yoshinari M, Hayakawa T, Wolke JCG, Nemoto K, Jansen JA (1997) Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings. J Biomed Mater Res 37:60–67CrossRefGoogle Scholar
  66. 66.
    Wolke JGC, De Groot K, Jansen JA (1998) Dissolution and adhesion behavior of radiofrequency magnetron-sputtered Ca-P coatings. J Mater Sci 3(13):3371–3376CrossRefGoogle Scholar
  67. 67.
    Zeng H, Chittur KK, Lacefield WR (1999) Dissolution/reprecipitation of calcium phosphate thin films produced by ion beam sputter deposition technique. Biomaterials 20(5):443–451CrossRefGoogle Scholar
  68. 68.
    Wang C, Chen Z, Guan K, Liu Z, Wang P, Zheng S, Liao X (2000) Structural characterization of ion beam sputter deposited calcium phosphate coatings. Peop Rep China Surf Coat Technol 130(1):39–45CrossRefGoogle Scholar
  69. 69.
    Nakamura S, Ohgaki M, Kobayashi T, Hamagami J, Yamashita K (1999) Biological evaluation and surface properties of bone-like hydroxyapatite films prepared by RF-sputtering method. Proc Int Symp Ceram Med 12:467–470Google Scholar
  70. 70.
    Ellingsen JE, Pinholt FM (1995) Pretreatment of titanium implants with lanthalum ions alters the bone reaction. J Mater Sci: Mater Med 6:125–129CrossRefGoogle Scholar
  71. 71.
    Chapman D (1993) Biomembranes and new hemocompatible materials. Langmuir 9:39–45CrossRefGoogle Scholar
  72. 72.
    Ishihara K, Oshida H, Endo Y, Ueda T, Watenabe A, Nakabayashi N (1992) Hemocompati-bility of human whole blood on polymers with a phospholipid polar group and its mechanism. J Biomed Mater Res 26:1543–1552CrossRefGoogle Scholar
  73. 73.
    Claesson P (1993) Poly(ethylene oxide) surface-coatings - relationships between intermolecular forces, layer structure and protein repellency. Colloids Surf A 77:109–118CrossRefGoogle Scholar
  74. 74.
    Jeon SI, Lee JH, Andrade JD, De Gennes PG (1991) Protein-surface interactions in the presence of polyethylene oxide. II. Effect of protein size. J Colloid Interface Sci 142:149–166CrossRefGoogle Scholar
  75. 75.
    Healy KE, Thomas CH, Rezania A, Kim JE, McKeown PJ, Lom B, Hockberger PE (1996) Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials 17:195–208CrossRefGoogle Scholar
  76. 76.
    Rezania A, Johnson R, Lefkow a R, Healy KE (1999) Bioactivation of metal oxide surfaces. 1. Surface characterization and cell response. Langmuir 15(20):6931–6939CrossRefGoogle Scholar
  77. 77.
    Irvine DJ, Mayes AM, Satija SK, Barker JG, Sofia-AUgor SJ, Griffith LG (1998) Comparison of tethered star and linear poly(ethylene oxide) for control of biomaterials surface properties. J Biomed Mater Res 40:498–509CrossRefGoogle Scholar
  78. 78.
    Sofia SJ, Premnath V, Merrill E W (1998) Poly(ethylene oxide) grafted to silicon surfaces: grafting density and protein adsorption. Macromolecules 31:5059–5070CrossRefGoogle Scholar
  79. 79.
    Amiji M, Park K (1994) Analysis on the surface adsorption of PEO/PPO/PEO triblock copolymers by radiolabeling and fluorescence techniques. J Appl Polym Sci 52:539–544CrossRefGoogle Scholar
  80. 80.
    Amiji M, Park K (1992) Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers. Biomaterials 13:682–692CrossRefGoogle Scholar
  81. 81.
    Freij-Larsson C, Nylander T, Jannasch P, Wesslen B (1996) Adsorption behavior of amphiphilic polymers at hydrophobic surfaces: effects on protein adsorption. Biomaterials 17:2199–2218CrossRefGoogle Scholar
  82. 82.
    Huang N, Michel R, Vörös J, Textor M, Hofer R, Rossi A, Elbert DL, Hubbell JA, Spencer ND (2001) Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: Surface analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir 17(2):489–498CrossRefGoogle Scholar
  83. 83.
    Harder P, Grunze M, Dahint R, Whitesides G M, Laibinis P E (1998) Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J Phys Chem B 102:426–436CrossRefGoogle Scholar
  84. 84.
    Kawaguchi S, Imai G, Suzuki J, Miyahara A, Kitano T (1997) Aqueous solution properties of oligo- and poly(ethylene oxide) by static light scattering and intrinsic viscosity. Polymer 38(12):2885–2891CrossRefGoogle Scholar
  85. 85.
    Claesson PM, Blomberg E, Paulson O, Malmsten M (1996) Adsorption and interaction of a graft copolymer of poly(ethylene imine) and poly(ethylene oxide). Colloids Surf A 112:131–139CrossRefGoogle Scholar
  86. 86.
    Wang X, Spencer HG (1996) Solute-solute separations of binary-solute solutions using formed-in-place membranes. J Appl Polymer Sci 61(5):827–832CrossRefGoogle Scholar
  87. 87.
    Barie N, Rapp M, Sigrist H, Ache HJ (1998) Covalent photolinker-mediated immobilization of an intermediate dextran layer to polymer-coated surfaces for biosensing applications. Biosensors and Bioelectronics 13:855–860CrossRefGoogle Scholar
  88. 88.
    Culp LA, Sukenik CN (1994) Glass and metal surfaces derivatized with self-assembled monolayers: Cell type-specific modulation of fibronectin adhesion functions. J Tissue Culture Methods 16:161–172CrossRefGoogle Scholar
  89. 89.
    Healy KE, Rezania A, Stile RA (1999) Designing biomaterials to direct biological responses. Bioartificial Organs II: Technology, Medicine, and Materials 875:24–35Google Scholar
  90. 90.
    Massia SP, Hubbell JA (1991) An RGD spacing of 440 nm is sufficient for integrin αvß3 mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol 114:1089–1100CrossRefGoogle Scholar
  91. 91.
    Roberts C, Chen CS, Mrksich M, Martichonok V, Ingber DE, Whitesides GM (1998) Using mixed self-assembled monolayers presenting RGD and (EG)3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces. J Am Chem Soc 120:6548–6555CrossRefGoogle Scholar
  92. 92.
    Xiao SJ (1999) Tailored Organic Thin Films on Gold and Titanium. Ph.D. thesis Nr.13058, Swiss Federal Institute of Technology (ETH), ZurichGoogle Scholar
  93. 93.
    Rezania A, Healy KE (1999) Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Progr 15(1):19–32CrossRefGoogle Scholar
  94. 94.
    Bianco P, Fisher LW, Young MF, Termine JD, Robey PG (1991) Expression of bone sialoprotein (BSP) in developing human tissue. Calcif Tissue Int. 49:421–426CrossRefGoogle Scholar
  95. 95.
    Healy KE, Harbers GM, Barber TA, Sumner DR (2000) Osteoblast interactions with engineered surfaces, In: Davies JE (ed) Bone Engineering. Publisher: em squared inc, Toronto, pp 268–281Google Scholar
  96. 96.
    Ferris DM, Moodie GD, Dimond PM, Gioranni CWD, Ehrlich MG, Valentini RF (1999) RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials 20:2323–2331CrossRefGoogle Scholar
  97. 97.
    Reddi AH (1984) Extracellular matrix and development. In: Piez KA, Reddi AH (eds) Extracellular Matrix Biochemistry. Elsevier, New York, pp 375–412Google Scholar
  98. 98.
    Ripamonti U, Reddi AH (1994) Periodontal regeneration: potential role of bone morphogenetic proteins. J Peridont Res 29:225–235CrossRefGoogle Scholar
  99. 99.
    Ripamonti U, Van Der Heever B, Sampath TK, Tucker MM, Rueger DC, Reddi AH (1996) Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (hop-1, bone morphogenetic protein-7). Growth Factors 13:1–17CrossRefGoogle Scholar
  100. 100.
    Ripamonti U, Reddi AH (1997) Tissue engineering, morphogenesis, and regeneration of the peridontal tissue by bone morphogenetic proteins. Crit Rev Oral Biol Med 8(2): 154–163CrossRefGoogle Scholar
  101. 101.
    Ripamonti U (1996) Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17:31–35CrossRefGoogle Scholar
  102. 102.
    Wolke JGC, Vercaigne S, Van Der Waerden JPCM, Schaeken HG, Jansen JA (1999) In vivo dissolution behavior of various magnetron sputtered Ca-P coatings on roughened titanium implants. Proc Int Symp Ceram Med 12:487–490Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Shou-Jun Xiao
    • 1
  • Gregory Kenausis
    • 2
  • Marcus Textor
    • 2
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Materials, Laboratory for Surface Science and TechnologySwiss Federal Institute of Technology (ETH)ZurichSwitzerland

Personalised recommendations