• Maxim Kontsevich
  • Don Zagier


As beginning students of mathematics, we learn successively about various kinds of numbers. First come the natural numbers:

N = {1, 2, 3, …}.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. André: G-Functions and Geometry. Aspects of Mathematics 13. Vieweg, Braunschweig 1989Google Scholar
  2. 2.
    A. Beilinson: Higher regulators of modular curves. In: Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Contemp. Math. 55. Amer. Math. Soc., Providence 1986, pp. 1–34CrossRefGoogle Scholar
  3. 3.
    F. Beukers: A note on the irrationality of f (2) and f (3). Bull. London Math. Soc. 11 (1979), 268–272CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    F. Beukers: Algebraic values of G-functions. J. Reine Angew. Math. 434 (1993), 45–65zbMATHMathSciNetGoogle Scholar
  5. 5.
    F. Beukers, E. Calabi and J. Kolk: Sums of generalized harmonic series and volumes. Nieuw Arch. Wisk. 11 (1993), 217–224zbMATHMathSciNetGoogle Scholar
  6. 6.
    F. Beukers and G. Heckman: Monodromy for the hypergeometric function n F n-1. Inv. math. 95 (1989), 325–354CrossRefzbMATHGoogle Scholar
  7. 7.
    F. Beukers and J. Wolfart: Algebraic values of hypergeometric functions. In: New Advances in Transcendence Theory (ed. A. Baker). Cambridge University Press (1988), 68–81CrossRefGoogle Scholar
  8. 8.
    S. Bloch: A note on height pairings, Tamagawa numbers, and the Birch and Swinnerton-Dyer conjecture. Inv. math. 58 (1980), 65–76CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    S. Bloch and H. Esnault: Gauss-Manin determinant connections and periods for irregular connections. Preprint, Essen 1999zbMATHGoogle Scholar
  10. 10.
    A. Borel: Cohomologie de SL n et valeurs de fonctions zêta aux points entiers. Ann. Scuola Norm. Sup. Pisa 4 (1977), 613–636zbMATHGoogle Scholar
  11. 11.
    D. W. Boyd: Mahler’s measure and special values of L-functions. Experiment. Math. 7 (1998), 37–82CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    P. Colmez: Périodes des variétés abéliennes à multiplication complexe. Ann. Math. 138 (1993), 625–683CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    P. Deligne: Valeurs de fonctions L et périodes d’intégrales. In: Automorphic forms, Representations, and L-functions, Proc. Symp. Pure Math. 33. Amer. Math. Soc., Providence 1979, pp. 313–346CrossRefGoogle Scholar
  14. 14.
    C. Deninger and A. Scholl: The Beilinson conjectures. In: L-functions and Arithmetic, London Math. Soc. Lecture Notes 153 (eds. J. Coates and M. J. Taylor). Cambridge University Press, Cambridge 1991, pp. 173–209CrossRefGoogle Scholar
  15. 15.
    B. Gross and D. Zagier: Heegner points and derivatives of L-series. Inv. Math. 85 (1986), 225–320CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    B. Gross, W. Kohnen and D. Zagier: Heegner points and derivatives of L-series. II. Math. Annalen 278 (1987), 497–562CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    W. Hulsbergen: Conjectures in Arithmetic Algebraic Geometry. Aspects of Mathematics 18. Vieweg, Braunschweig 1992zbMATHGoogle Scholar
  18. 18.
    U. Jannsen, S. Kleiman, J.-P. Serre (eds.): Motives. Proc. Symp. Pure Math. 55. AMS, Providence 1994zbMATHGoogle Scholar
  19. 19.
    J.-P. Jouanolou: Une suite exacte de Mayer-Vietoris en K-theorie algebrique. In: Algebraic K-theory. I, Lecture Notes in Math. 341. Springer, Berlin Heidelberg 1973, pp. 293–316zbMATHGoogle Scholar
  20. 20.
    F. Rodriguez Villegas: Modular Mahler Measures I. In: Topics in Number Theory (University Park, PA, 1997), Math. Appl. 467. Kluwer, Dordrecht 1999, pp. 17–48CrossRefGoogle Scholar
  21. 21.
    A. Scholl: Remarks on special values of L-functions. In: L-functions and Arithmetic, London Math. Soc. Lecture Notes 153 (eds. J. Coates and M. J. Taylor). Cambridge University Press, Cambridge 1991, pp. 373–392CrossRefGoogle Scholar
  22. 22.
    D. Shanks: Incredible identities. Fibonacci Quart. 12 (1974), 271, 280zbMATHMathSciNetGoogle Scholar
  23. 23.
    D. Shanks: Dihedral quartic approximations and series for π. J. Numb. Th. 14 (1982), 397–423CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    H. Stark: Values of L-functions at S = 1, 1–IV. Adv. Math. 7(1971), 301–343; 17 (1975), 60–92; 22 (1976), 64–84; 35 (1980), 197–235CrossRefzbMATHGoogle Scholar
  25. 25.
    J. Tate: Les conjectures de Stark sur les fonctions L d’Artin en s = 0. Prog, in Math. 47. Birkhäuser, Boston 1984Google Scholar
  26. 26.
    A. Weil: Elliptic functions acccording to Eisenstein and Kronecker. Ergebnisse der Math. 88. Springer, Berlin Heidelberg 1976Google Scholar
  27. 27.
    N. J. Wildberger: Real fish, real numbers, real jobs. The Mathematical Intelligencer 21 (1999), 4–7CrossRefGoogle Scholar
  28. 28.
    H. Yoshida: On absolute CM-periods. In: Automorphic Forms, Automorphic Representations and Arithmetic (Fort Worth, TX, 1996), Proc. Sympos. Pure Math. 66, Amer. Math. Soc., Providence 1999, pp. 221–278Google Scholar
  29. 29.
    H. Yoshida: On absolute CM-periods. II. Amer. J. Math. 120 (1998), 1199–1236CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    D. Zagier: Poly logarithms, Dedekind zeta functions and the algebraic K-theory of fields. In: Arithmetic Algebraic Geometry, Progr. Math. 89. Birkhäuser, Boston 1991, pp. 391–30CrossRefGoogle Scholar
  31. 31.
    D. Zagier: Some strange 3-adic identities (Solution to Problem 6625). Amer. Math. Monthly 99 (1992), 66–69CrossRefMathSciNetGoogle Scholar
  32. 32.
    D. Zagier: Values of zeta functions and their applications. In: First European Congress of Mathematics, Volume II, Progress in Math. 120. Birkhäuser, Basel 1994, pp.497–512zbMATHGoogle Scholar
  33. 33.
    D. Zagier and H. Gangl: Classical and elliptic polylogàrithms and special values of L-series. In: The Arithmetic and Geometry of Algebraic Cycles, Nato Science Series C 548. Kluwer, Dordrecht 2000, pp. 561–615CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Maxim Kontsevich
  • Don Zagier

There are no affiliations available

Personalised recommendations