Advertisement

On the Representation of Differential Forms by Potentials in Dimension 3

  • A. Bossavit
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 18)

Abstract

The notions of scalar and vector potential of a layer of charge or currents are presented in differential geometric language, using a notation which aims at clarifying the connection with standard vector algebraic formalism.

Keywords

Differential Form Boundary Integral Operator Hodge Operator Stokes Theorem Finite Integration Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bossavit, A: The’ scalar’ Poincaré-Steklov operator and the ‘vector’ one (…). in Domain Decomposition Methods for Partial Differential Equations (R. Glowinski et al., eds.), SIAM, Philadelphia (1991) 19–26.Google Scholar
  2. 2.
    Costabel, M.: Boundary integral operators on Lipschitz domains. SIAM J. Math. Anal. 19 (1988) 613–26.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Morrey, C.B.: Multiple integrals in the calculus of variations. Springer-Verlag, New York (1966).zbMATHGoogle Scholar
  4. 4.
    Paquet, L.: Problèmes mixtes pour le problème de Maxwell. Annales Fac. Se. Toulouse 4 (1982) 103–41.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    de Rham, G.: Variétés différentiables. Hermann, Paris (1960).zbMATHGoogle Scholar
  6. 6.
    Weiland, T.: Time domain electromagnetic field computation with finite dif-ference methods. Int. J. Numer. Modelling: Electronic Networks, Devices and Fields 9 (1996) 295–319.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • A. Bossavit
    • 1
  1. 1.Électricité de FranceClamartFrance

Personalised recommendations