Advertisement

Parallel Maxwell Solvers

  • G. Haase
  • M. Kuhn
  • U. Langer
  • S. Reitzinger
  • J. Schöberl
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 18)

Abstract

The numerical simulation of technical 3D magnetic field problems requires fast solvers for the resulting systems of equations. Geometric or algebraic multigrid methods can be used depending on whether a mesh hierarchy is available or not. The paper presents the main ideas of the sequential methods and describes the necessary adaptations for the parallelization. Performance results for both, sequential and parallel solvers underline the high efficiency of the methods.

Keywords

Coarse Grid Multigrid Method Finite Element Space Finite Element Equation Multigrid Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hiptmair, Multigrid methods for Maxwell’s equations, SIAM J. Numer. Anal. 1999 Vol. 36 pages:204–225MathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Arnold and R. Falk and R. Winther, Multigrid in H(div) and H(curl), Numer. Math. 2000 Vol. 85 pages: 197–218MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    J. W. Ruge and K. Stuben, Multigrid Methods, Algebraic Multigrid (AMG), SIAM 1986 Vol. 5 pages:73–130Google Scholar
  4. 4.
    Gundolf Haase and Michael Kuhn and U. Langer, Parallel Multigrid 3D Maxwell Solvers, University Linz, SFB Report 1999 No. 99–23Google Scholar
  5. 5.
    Michael Kuhn and Ulrich Langer and Joachim Schöberl, Scientific Computing Tools for 3D Magnetic Field Problems, The Mathematics of Finite Elements and Applications X 2000 pages: 239–258Google Scholar
  6. 6.
    J. Nédéec, A new family of mixed finite elements in R 3, Numer. Math. 1986 Vol. 50 pages:57–81MathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Beck and P. Deuflhard and R. Hiptmair and R.H.W. Hoppe and B. Wohlmuth, daptive multilevel methods for edge element discretizations of Maxwell’s equations, Surv. Mat. Ind. 1999 Vol. 8 pages: 271–312MathSciNetzbMATHGoogle Scholar
  8. 8.
    S. Reitzinger and J. Schöberl, Algebraic Multigrid for Edge Elements, University Linz 2000 No. 00–15Google Scholar
  9. 9.
    Gundolf Haase, Parallelisierung numerischer Algorithmen für partielle Differentialgleichungen, Teubner 1999 ISBN 3-519-02970-7Google Scholar
  10. 10.
    M. Kaltenbacher and S. Reitzinger, Nonlinear 3D Magnetic Field Computations using Lagrange FE-functions and Algebraic Multigrid, 2000Google Scholar
  11. 11.
    SFB F013, Software tools, SFB“Numerical and Symbolic Scientific Computing” http://www.sfbO13.uni-linz.ac.at 1999
  12. 12.
    G. Haase and M. Kuhn, Preprocessing for 2D FE-BE Domain Decomposition Methods, Comp. Vis. Sci. 1999 Vol. 2 pages 25–35zbMATHCrossRefGoogle Scholar
  13. 13.
    G. Haase and M. Kuhn and S. Reitzinger, Parallel AMG on Distributed Memory Computers, University Linz SFB Report No. 00–16 2000Google Scholar
  14. 14.
    M. Schinnerl and J. Schöberl and M. Kaltenbacher and U. Langer and R. Lerch, Multigrid Methods for the fast Numerical Simulation of Coupled Magnetomechanical Systems, ZAMM 2000 Vol. 80 pages: 117–120CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • G. Haase
    • 1
  • M. Kuhn
    • 1
  • U. Langer
    • 1
  • S. Reitzinger
    • 1
  • J. Schöberl
    • 1
  1. 1.SFB F013 “Numerical and Symbolic Scientific Computing”Johannes Kepler University LinzLinzAustria

Personalised recommendations