Computational Electromagnetism in Transformer and Switchgear Design: Current Trends

  • A. Blaszczyk
  • H. Ketterer
  • A. Pedersen
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 18)


The paper is focused on efficiency of 3D electromagnetic simulation in design of power transformers and medium voltage switchgear. The dielectric and electromechanical design procedures as well as Intranet based access to simulation resources have been discussed.


Power Transformer Virtual Prototype Medium Voltage Computational Electromagnetism Boundary Integral Equation Formul 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Andjelic, B. Krstajic, S. Milojkovic, A. Blaszczyk, H. Steinbigler, M. Wohlmuth: Integral Methods for the Calculation of Electric Fields, Scientific Series of the International Bureau Research Center Juelich, 1992 (ISBN 3-89336-084-0)Google Scholar
  2. 2.
    N. de Kock, M. Mendik, Z. Andjelic, A. Blaszczyk: Application of 3D boundary element method in the design of EHV GIS components, IEEE Magazine on Electrical Insulation, May/June 1998 Vol. 14, No. 3, pp. 17–22.CrossRefGoogle Scholar
  3. 3.
    A. Blaszczyk, Z. Andjelic, P. Levin, A. Ustundag: Parallel Computation of Electric Fields in a Heterogeneous Workstation Cluster, Lecture Notes on Computer Science Vol. 919, Springer Verlag Berlin Heidelberg 1995, Proc. HPCN Europe 95, pp 606–611Google Scholar
  4. 4.
    A. Blaszczyk, C. Trinitis: Experience with PVM in an Industrial Environment, Lecture Notes on Computer Science Vol. 1156, Proc. EuroPVM96, Munich, pp. 174–179.Google Scholar
  5. 5.
    Parametric Technology Corporation: Pro/Engineer. See: www.ptc.comGoogle Scholar
  6. 6.
    C. Trinitis: Field optimisation of three-dimensional insulating systems in high voltage technology (in German). Fortschr.-Ber. VDI R. 21 Nr. 242. VDI Verlag 1998Google Scholar
  7. 7.
    K. Petcharaks: Applicability of the streamer breakdown criterion to inhomogeneous gas gap, Ph. D. Thesis No. 11192, ETH Zurich, 1995Google Scholar
  8. 8.
    H. Boehme: Medium voltage technology. Chapter 7. Insulation behaviour. Verlag Technik, Berlin-Muenchen 1992.Google Scholar
  9. 9.
    FEGS Ltd.: CADfix. See:
  10. 10.
    G. Sande: Computation of induced currents in three dimensions. The T-? potential formulation used in electrical power engineering, Doctorial dissertation, Norwegian Institute of Technology, 1993, ISBN 82-7119-523-9Google Scholar
  11. 11.
    B. Krstajic, Z. Andjelic, S. Milojkovic, S. Babic and S. Salon: Non-linear 3-D magnetostatic field calculation by the Integral Equation method with surface and volume magnetic charges, IEEE Trans, on Magn., Vol. 28, 1992, 1088–1091.CrossRefGoogle Scholar
  12. 12.
    J. Shen, Z. Andjelic, B. Schaub: A hybrid single and dual simple layer boundary integral equation formulation for 3-D eddy currents, IEEE Trans. On Magnetics, Vol. 43, No. 5, 1998.Google Scholar
  13. 13.
    HKS Inc.: Abaqus. See:
  14. 14.
    CoCreate (a HP Company): OneSpace. FirstSpace. See:

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • A. Blaszczyk
    • 1
  • H. Ketterer
    • 2
  • A. Pedersen
    • 3
  1. 1.ABB Corporate ResearchHeidelbergGermany
  2. 2.ABB Power TrmasformersBad HonnefGermany
  3. 3.ABB DistributionSkienNorway

Personalised recommendations