# A Common-Mode Skeleton Model for EMC Simulations

Conference paper

## Abstract

Systems that consist of printed circuit boards with various digital and analog components, connecting wires and metal enclosures can show complex electromagnetic behaviour. A model is reviewed that allows for the calculation of the most important contribution to the emitted radiation from such systems. In this model the radiation is driven by *common-mode* voltage sources. The physical origin of these voltage sources is explained and the relevant electric field integral equation is derived. When planes are discretized by wire grids, the resulting equations can be analysed by means of a program like NEC. A program similar to NEC, named BERBER, is presented.

## Keywords

Voltage Source Wire Grid Skeleton Model Total Electric Field Cylindrical Wire
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- 1.Bergervoet, J. R., G. P. J. F. M. Maas, M. J. C. M. van Doom,
*The commonmode skeleton model for assessment of electromagnetic compatibility at the system level*, Proceedings of the 12^{th}International Zürich Symposium on EMC (1997).Google Scholar - 2.Bergervoet, J. B., Philips Journal of Research 48 (1994), p. 63–87.Google Scholar
- 3.Burke, G., A. Poggio,
*Numerical Electromagnetics Code (NEC)—Method of moments*, Lawrence Livermore National Laboratory (1981).Google Scholar - 4.See e.g.,
*The unofficial Numerical Electromagnetic Code (NEC) Archives*at http://www.qsl.net/wb6tpu/swindex.html. - 5.Jackson, J. D.,
*Classical Electrodynamics*, Third Edition, Wiley (1998).Google Scholar - 6.Bergervoet, J.R., R. Rietman,
*Combined modelling of ICs, packages and PCBs using analytical equivalent-circuit approximations*, Proceedings of the 13^{th}international Zürich Symposium on EMC (1999).Google Scholar - 7.Verbeek, Menno E.,
*Repairing near-singularity for dense EMC problems by adaptive basis techniques*, to appear in*Numerical Linear Algebra with Applications*, special issue with proceedings of the 1999 Minneapolis conference*Preconditioning Techniques for Large Sparse Matrix Problems in Industrial Applications*(2000).Google Scholar - 8.For an overview of iterative solution methods for linear equations see e.g., Saad, Y. and H. van der Vorst,
*Iterative Solution of Linear Systems in the 20-th Century*, preprint available at http://www.math.uu.nl/people/vorst/ithistory.tgz, to appear in JCAM (2000). - 9.Schelkunoff, A. S. and H. T. Friis,
*Antennas; theory and practice*Wiley (1952).Google Scholar - 10.Wu, T.T. and R. P. King,
*The Tapered Antenna and Its Applications to the Junction Problem for Thin Wires*, IEEE Transactions on Antennas and Propagation, Vol. AP 24 (1976).Google Scholar - 11.The homepage of the Mesa project is http://www.mesa3d.org.Google Scholar
- 12.Kanwal, R.P.,
*Linear Integral Equations, Theory and Technique*, Second Edition, Birkhäuser (1997).Google Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 2001