Advertisement

Evolution and Diversity of Prokaryotic Small Heat Shock Proteins

  • Guido Kappé
  • Jack A. M. Leunissen
  • Wilfried W. de Jong
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 28)

Abstract

To understand the evolutionary mechanisms that led to the diversification of the various types of heat shock proteins(Hsps) and their functioning in multichaperone networks is a great challenge (Feder and Hofmann 1999). Considerable information is already available on the evolution of the Hsp60 and Hsp70 families (e.g., Gupta 1995; Budin and Philippe 1998; Karlin and Brocchieri 1998; Macario et al. 1999; Archibald et al. 2000; Brocchieri and Karlin 2000). Relatively less is known about the early evolution of the small heat shock proteins (sHsps), which are considerably more divergent in structure and function than the Hsp60s and Hsp70s.

Keywords

Secondary Structure Prediction Lateral Gene Transfer Small Heat Shock Protein Lateral Transfer Heat Shock Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibald JM, Logsdon JM Jr, Doolittle WF (2000) Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplication in CCT genes. Mol Biol Evol 17: 1456–1466PubMedCrossRefGoogle Scholar
  2. Brocchieri L, Karlin S (2000) Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sei 9:476–486CrossRefGoogle Scholar
  3. Budin K, Philippe H (1998) New insights into the phylogeny of eukaryotes based on ciliate Hsp70 sequences. Mol Biol Evol 15:943–956PubMedCrossRefGoogle Scholar
  4. Caspers G-J, Leunissen JAM, De Jong WW (1995) The expanding small heat-shock protein family, and structure predictions of the conserved “α-crystallin domain”. J Mol Evol 40:238–248PubMedCrossRefGoogle Scholar
  5. Cunningham AF, Spreadbury CL (1998) Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton a-crystallin homolog. J Bacteriol 180:801–808PubMedGoogle Scholar
  6. De Jong WW, Caspers G-J, Leunissen JAM (1998) Genealogy of the a-crystallin—small heat-shock protein superfamily. Int J Biol Macromol 22:151–162PubMedCrossRefGoogle Scholar
  7. Ehrnsperger M, Buchner J, Gaestel M (1997a) Structural and function of small heat-shock proteins. In: Fink AL, Goto Y (eds) Molecular chaperones in the life cycle of proteins. Marcel Dekker Inc, New York, pp 533–557.Google Scholar
  8. Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997b) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16: 221–229PubMedCrossRefGoogle Scholar
  9. Feder ME, Hofmann G (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282PubMedCrossRefGoogle Scholar
  10. Felsenstein J (1993) PHYLIP (phylogeny inference package). Distributed by the author. Department of Genetics, University of Washington, SeattleGoogle Scholar
  11. González-Márquez H, Perrin C, Bracquart P, Guimont C, Linden G (1997) A 16kDa protein family overexpressed by Streptococcus thermophilus PB18 in acid environments. Microbiol 143: 1587–1594CrossRefGoogle Scholar
  12. Gupta RS (1995) Evolution of the chaperonin families (Hsp60, HsplO, Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11PubMedCrossRefGoogle Scholar
  13. Heidelbach M, Skladny H, Schrairer HU (1993) Heat shock and development induce synthesis of a low-molecular-weight stress-responsive protein in the myxobacterium Stigmatella aurantiaca. J Bacteriol 175:7479–7482PubMedGoogle Scholar
  14. Henriques AO, Beall BW, Moran CP Jr (1997) CotM of Bacillus subtilis, a member of the acrystallin family of stress proteins, is induced during development and participates in spore outer coat formation. J Bacteriol 179:1887–1897PubMedGoogle Scholar
  15. Horváth I, Glatz A, Varvasovszki V et al. (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proc Natl Acad Sei USA 95:3513–3518CrossRefGoogle Scholar
  16. Jobin M-P, Delmas F, Garmyn D, Deviès C, Guzzo J (1997) Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos. Appl Environ Microbiol 63:609–614PubMedGoogle Scholar
  17. Karlin S, Brocchieri L (1998) Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J Mol Evol 47:565–577PubMedCrossRefGoogle Scholar
  18. Kim KK, Kim R, Kim S-H (1998) Crystal structure of a small heat-shock protein. Nature 394: 595–599PubMedCrossRefGoogle Scholar
  19. Lawrence JG (1999) Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol 2:519–523PubMedCrossRefGoogle Scholar
  20. Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671PubMedCrossRefGoogle Scholar
  21. Macario AJ, Lange M, Ahring BK, De Macario EC (1999) Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 63:923–967PubMedGoogle Scholar
  22. Michelini ET, Flynn GC (1999) The unique chaperone Operon of Thermotoga maritima: cloning and initial characterization of a functional Hsp70 and a small heat shock protein. J Bacteriol 181:4237–4244PubMedGoogle Scholar
  23. Münchbach M, Nocker A, Narberhaus F (1999) Multiple small heat shock proteins in rhizobia. J Bacteriol 181:83–90PubMedGoogle Scholar
  24. Narberhaus F, Weiglhofer W, Fischer H-M, Hennecke H (1996) The Bradyrhizobium japonicum rpoH1 gene encoding a oc32-like protein is part of a unique heat shock gene cluster together with groESL1 and three small heat shock genes. J Bacteriol 178:5337–5346PubMedGoogle Scholar
  25. Plesofsky-Vig N, Vig J, Brambl R (1992) Phylogeny of the alpha-crystallin-related heat-shock proteins. J Mol Evol 35:537–545PubMedCrossRefGoogle Scholar
  26. Rost B, Sander C (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19:55–72PubMedCrossRefGoogle Scholar
  27. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  28. Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969CrossRefGoogle Scholar
  29. Thompson JD, Higgins DG, Gibson TJ (1994a) Improved sensitivity of profile searches through the use of sequence weights and gap excision. Comput Appl Biosci 10:19–29PubMedGoogle Scholar
  30. Thompson JD, Higgins DG, Gibson TJ (1994b) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  31. Veigner L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273:11032–11037CrossRefGoogle Scholar
  32. Waters ER, Vierling E (1999) The diversion of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol 16:127–139PubMedCrossRefGoogle Scholar
  33. Yoshida A, Nakano Y, Yamashita Y, Oho T, Ohishi M, Koga T (1999) A novel dnaK operon from Porphyromonas gingivalis. FEBS Lett 12:287–291CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Guido Kappé
    • 1
  • Jack A. M. Leunissen
    • 2
  • Wilfried W. de Jong
    • 1
  1. 1.Department of BiochemistryUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Centre for Molecular and Biomolecular InformaticsUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations