Observation of the Earth and Its Environment pp 757-797 | Cite as
Satellite Radionavigation Systems
Abstract
-
Current dependence on navigation systems of GPS and GLONASS that are run by military organizations without any means of international control.
-
Europe wants its own civil-controlled navigation system for political and security reasons. To be in a position to compete for a fair share in a large global navigation and communication market. The commitment to build and operate the Galileo navigation system represents a strategic, economic, and technological venture for Europe.
-
The requirement for safety-critical application services. Galileo should be able to provide a service with a certifiable performance level (which neither independent satellite navigation system can presently do) to support multimodal traffic, sufficient in particular in civil aviation, marine navigation and road transport.
Preview
Unable to display preview. Download preview PDF.
References
- 1258).GNSS-1 (Global Navigation Satellite System-1). The first generation GNSS-1 comprises the following elements: GPS, GLONASS and their augmentation systems [WAAS (Wide Area Augmentation System) of the US, EGNOS (European Geostationary Navigation Overlay System) or Europe, and MSAS (Multi-Transport Satellite Augmentation System) of Japan]. The three segments of GNSS-1 are expected to be operational by 2003.Google Scholar
- 1259).GNSS-2 (Global Navigation Satellite System-2). The second generation GNSS comprises all elements of GNSS-1 plus Galileo. GNSS-2 is planned to be operational by 2008.Google Scholar
- 1260).Information provided by Hans L. Trautenberg of Astrium GmbH, Munich (viewgraph package), representing the ESA baseline concept as of Feb. 2001Google Scholar
- 1261).G. Salgado, S. Abbondanza, R. Blondel, S. Lannelongue, “A New Model — Constellation Availability, ” Galileo’s World, Spring 2001, pp. 30–35Google Scholar
- 1262).G. K. Crosby, W. S. Ely, K. W. McPherson, et al., “A Ground-based Regional Augmentation System (GRAS) — The Australian Proposal, ” ION-2000, Salt Lake City, UT, Sept. 19–22, 2000, pp. 713–721Google Scholar
- 1263).R. Loh, V. Wullschleger, B. Elrod, M. Lage, F. Haas, “The US Wide-Area Augmentation System (WAAS), ” Navigation ION, Vol. 42, No. 3, Fall 1995, pp, 435–465Google Scholar
- 1264).G. V. Kinal, O. Razumovsky, “Performance of the Inmarsat-3 Navigation Augmentation Payloads, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, Kansas City, MO, pp. 1285–1294Google Scholar
- 1265).T. Walter, A. Hansen, J. Blanch, et al, “Robust Detection of Ionospheric Irregularities, ” ION-2000, Salt Lake City, UT, Sept. 19–22, 2000, pp. 209–218Google Scholar
- 1266).J. Ceva et al., “Incorporation of Orbital Dynamics to Improve Wide-Area Differential GPS, ” Navigation ION, Vol. 44, No. 2, Summer 1997, pp. 171–213Google Scholar
- 1267).http://gps.faa.gov/ProgramsAVAAS/waas.htm
- 1268).K. Gromov, D. Akos, S. Pullen, P. Enge, B. Parkinson, “GIDL: Generalized Interference Detection and Localization System, ” ION 2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 447–457Google Scholar
- 1269).A. Manz, K. Shallberg, Peter Shloss, “Improving WAAS Receiver Radio Frequency Interference Rejection, ” ION 2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 471–479Google Scholar
- 1270).E. Copros, J. Spiller, T. Underwood, Ch. Vialet, “An Improved Space Segment for the End-State WAAS and EG-NOS Final Operational Capability, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City, MO, pp.1119–1125Google Scholar
- 1271).S. Loddo, D. Flament, J. Benedicto, P. Michel, “EGNOS, the European Regional Augmentation to GPS and GLONASS, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City, MO, pp. 1143–1150Google Scholar
- 1272).J. Beale, P. Campagne, “European Commission Actions to Consolidate The European Contribution to a GNSS, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City, MO, pp. 1467–1471Google Scholar
- 1273).http://www.esa.int/EGNOS/
- 1274).L Gauthier, P. Michel, J. Ventura-Traveset, J. Benedicto, “EGNOS: The First Step in Europe’s Contribution to the Global Navigation Satellite System, ” ESA Bulletin, No. 105, Feb. 2001, pp. 35–42Google Scholar
- 1275).J. Nieto, M. A. Molina, M. L. de Mateo, R. Roman, L. Andrada, “Assessment of EGNOS System and Performance: Early Test System, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, Kansas City, MO, pp. 1345–1354Google Scholar
- 1276).A. Cruz, J. Cosmen, J. M. Legido, J. Caro, H. Secretan, N. Suard, “EGNOS System Test Bed: Achievements and Ongoing Upgrades, ” ION-200G, Salt Lake City, UT, Sept. 19–21, 2000, pp. 199–208Google Scholar
- 1277).M. Kawai, H. Nakao, K. Wakasa, “GPS/SBAS Receiver Flight Test in Japan, ” ION GPS 2000, Sept. 19–22, 2000, Slat Lake City, UT, pp. 266–276Google Scholar
- 1278).“Understanding Signals from GLONASS Navigation Satellites, ” International Journal of Satellite Communications’, Vol. 7, 11–12, 1989, pp. 11–22Google Scholar
- 1279).“Russians Launch Trio of GLONASS Satellites, ” GPS World, January 1995, p. 15Google Scholar
- 1280).N. Yefimova, “Russia’s GLONASS System Awaits Upgrade, ” Space News, Aug. 13, 2001, p. 24Google Scholar
- 1281).N. L. Johnson, “GLONASS Spacecraft, ” GPS World, Nov. 1994, pp. 51–58Google Scholar
- 1282).http://mx.iki.rssi.ru/SFCSIC/english.htm
- 1283).Y. Gouzhva, I. Koudryavtsev, V Korniyenko, I. Pushkina, “GLONASS Receivers: An Outline, ” GPS World, January 1994, pp. 30–36Google Scholar
- 1284).P. N. Misra, E. T. Bayliss, R. R. LaFrey, M. M. Pratt, R. A. Hogaboom, R. Muchnik, “GLONASS Performance in 1992: A Review, ” GPS World, May 1993, pp. 28–38Google Scholar
- 1285).P. N. Misra, et al., “Integrated use of GPS and GLONASS: Transformation between WGS 84 and PZ-90, ” Proceedings of ION GPS-96, The Institute of Navigation, pp. 307–314, 1996. (http://satnav.atc.ll.mit.edu/papers/PZ90-WGS84/PZ90-WGS84.html)Google Scholar
- 1286).Courtesy of A. Selivanov, ISDE and B. Zhukov, IKI, MoscowGoogle Scholar
- 1287).B. W. Parkinson, J. J. Spilker Jr., P. Axelrad, P. Enge, “Global Positioning System: Theory and Applications, Vol. I and II, “ AIAA, 1996CrossRefGoogle Scholar
- 1288).“The NAVSTAR GPS System, ” AGARD Lecture Series No. 161, ISBN 92–835-04771, Sept. 1988Google Scholar
- 1289).“Understanding Signals from GLONASS Navigation Satellites, ” International Journal of Satellite Communications, Vol. 7 11–12, 1989, pp.11–22Google Scholar
- 1290).“Navstar, ” Jane’s Spaceflight Directory 1988–89, 4th Edition, pp. 404–405Google Scholar
- 1291).B. W Parkinson was the first director of JPO, located at SAMSO of the USAF in El Segundo, CAGoogle Scholar
- 1292).M. Shaw, P. Levin, J. Martel, “The DoD: Stewards of a Global Information Resource, the Navstar Global Positioning System, ” Proceedings of the IEEE, Vol. 87, No. 1, Jan. 1999, pp.; 16–23Google Scholar
- 1293).Note: The block-I satellites were actually preceded by the NTS (Navigation Technology Satellite) experimental series. NTS-1 was launched on July 14, 1974 (the first satellite to fly atomic clocks: two rubidium oscillators) NTS-2 was launched June 23, 1977 (first cesium clock in space).Google Scholar
- 1294).L. F. Wiederholt, E. D. Kaplan, “Understanding GPS, Principles and Applications, ” Ärtech House Inc., Boston, 1996, Chapter 3Google Scholar
- 1295).S/C drawing courtesy of J. Keating, Lockheed Martin Astro Space, Valley Forge, PAGoogle Scholar
- 1296).T. Hartman, L. R. Boyd, D. Koster, J. A. Rajan, J. Harvey, “Modernizing the GPS Block IIR Spacecraft, ” ION GPS 2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 2115–2121Google Scholar
- 1297).K. Sandhoo, D. Turner, M. Shaw, “Modernization of the Global Positioning System, ” ION-2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 2175–2183Google Scholar
- 1298).S. C. Fisher, K. Ghassemi, “GPS IIF — The Next Generation, ” Proceedings of the IEEE, Vol. 87, No. 1, Jan. 1999, pp. 24–47CrossRefGoogle Scholar
- 1299).K. Ghassemi, S. C. Fisher, “Performance Projections of GPS IIF, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, Kansas City, MO, pp. 407–415Google Scholar
- 1300).Ch. Shank, J. W. Lavrakas, “Inside GPS: The Master Control Station, ” GPS World, September 1994, pp. 46–54Google Scholar
- 1301).F. H. Bauer, K. Hartman, J P. How, et al., “Enabling Spacecraft Formation Flying through Spaceborne GPS and Enhanced Automation Technologies, ” Proceedings of the ION-GPS Conference, Nashville TN, Sept. 15, 1999Google Scholar
- 1302).“GPS — the Next Generation, ” GPS World, Nov. Dec. 1991, pp. 12–16Google Scholar
- 1303).Glen Gibbons, “What in the World!?!” GPS WORLD, April 1991, p. 21–24Google Scholar
- 1304).B. Tryggö, R. Bäckström, “Threading the Needle: Differential GPS on the Baltic Sea, ” in GPS World Sept. 1991, pp. 22–26Google Scholar
- 1305).“GPS is Newest Aid in Earthquake Forecasting, ” Space News, March 18–24 1991, pp. 22Google Scholar
- 1306).
- 1307).“Smart Policy: Make Best GPS Data Available to All, ” Space News, April 1–7 1991, pp. 15Google Scholar
- 1308).http://gauss.gge.unb.ca/grads/sunil/sgps.htm
- 1309).E. G. Lightsey, “Spacecraft Attitude Control Using GPS Carrier Phase, ” Chapter 16 of Global Positioning System: Theory and Applications, Vol. 2, ’ ALAA Volume 164Google Scholar
- 1310).C. E. Cohen, “Attitude Determination, ” Chapter 19 of Global Positioning System: Theory and Applications, Vol. 2, ’ AIAA Volume 164Google Scholar
- 1311).J. K. Brock, R. Fuller, et al., “GPS Attitude Determination and Navigation Flight Experiment, ” Proceedings of ION GPS-95, Sept. 12–15, 1995, Palm Springs, CA, Sept. 1995, pp. 545–554Google Scholar
- 1312).W. Johnson, “Attitude Adjustment, GPS Innovation keeps Satellites Oriented, ” Satellite Communications, June 1995, pp. 19–21Google Scholar
- 1313).R. Fuller, D. Hong, S. Hur-Diaz, J. Rodden, M. Tse, “GPS Tensor An Attitude and Orbit Determination System for Space, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, Kansas City, MO, pp. 299–311Google Scholar
- 1314).F. Bauer, E. Lightsey, et al., “Pre-Flight Testing of the SPARTAN GADACS Experiment, ” Proceedings of ION GPS-94, Salt Lake City, pp. 1233–1241Google Scholar
- 1315).F. H. Bauer, J. R. O’Donnell, “Space-Based GPS 1996 Mission Overview, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City MO, pp. 1293–1302Google Scholar
- 1316).M. E. Lisano, J. R. Carpenter, S. Gomez, “Navigation, Attitude Determination, and Multipath Analysis Results from the STS-77 GPS Attitude and Navigation Experiment (GANE), ” Navigation, Vol. 46, No. 3, Fall 1999, pp. 175–192Google Scholar
- 1317).R. C. Hart, K. R. Hartman, A. C. Long, T. Lee, D. H. Oza, “GPS Enhanced Orbit Determination Experiment (GEODE) on the SSTI Lewis Spacecraft, ” Proceedings of ION GPS-96, Sept. 17–20, 96, pp. 1303–1312Google Scholar
- 1318).J. R. O’Donnell, J. D. McCullough, E. G. Lightsey, R. G. Schnurr, L. Jackson, “Testing of GPS-Based Attitude Control Systems, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, pp. 1063–1072Google Scholar
- 1319).E. G. Lightsey, G. C. Blackburn, J. E. Simpson, “Going Up: A GPS Receiver Adapts to Space, ” GPS World, Sept. 2000, pp. 30–34Google Scholar
- 1320).S. F. Gomez, “Attitude Determination and Attitude Dilution of Precision (ADOP) Results for International Space Station Global Positioning System (GPS) Receiver, ” Proceedings of ION, Sept. 19–22, 2000, pp. 1995–2002Google Scholar
- 1321).J. Simpson, C. Campbell, E. G. Lightsey, L. Jackson, “Testing Results of the X-38 Crew Return Vehicle GPS Receiver, ” Proceedings of ION, Sept. 19–22, 2000, Salt Lake City, UT, pp. 2038–2046Google Scholar
- 1322).“International GPS Services for Geodynamics, ” 1994 Annual Report, September 1, 1995, IGS Central Bureau, edited by J. F. Zumberge, R. Liu, and R. E. NeilanGoogle Scholar
- 1323).G. Beutler, E. Brockmann, “Proceedings of the International GPS Service for Geodynamics (IGS) Workshop, ” March 25–26, 1993, Astronomical Institute, University of BernGoogle Scholar
- 1324).R. E. Neilan, J. F. Zumberge, G. Beutler, J. Kouba, “The International GPS Service: A Global Resource for GPS Applications and Research, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, pp. 883–889Google Scholar
- 1325).CIGNET Report, CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, June 1989, pp. 235–256Google Scholar
- 1326).RK. Enge, R.M. Kalafus, M.E Ruane, “Differential Operation of the Global Positioning System, ” IEEE Communications Magazine, July 1988, Vol. 26, No.7, pp. 48–59Google Scholar
- 1327).B. McGarigle, “Top 40 Hydrography: Surveying with FM-based DGPS, ” GPS World April 1993 pp. 37–40Google Scholar
- 1328).“California-Based Firms Offer Highly Accurate GPS Services, ” Space News, Nov. 29-December 5, 1993, p. 7Google Scholar
- 1329).R. J. Danchik, “An Overview of Transit Development, ” Johns Hopkins APL Technical Digest, Vol. 19, No. 1, 1998, pp. 18–26Google Scholar
- 1330).W. H. Guier, G. C. Weiffenbach, “Genesis of Satellite Navigation, ” Johns Hopkins APL Technical Digest, Vol. 18, No. 2, 1997, pp. 178–181Google Scholar
- 1331).Note: The very first Transit satellites transmitted signals at four frequencies: 54, 162, 216, and 324 MHz. The signals provided experimental data to evaluate ionospheric effects as a function of frequency. The final design is based on a two-frequency method for correcting ionospheric error.Google Scholar
- 1332).J. Dassoulas, “The TRIAD Spacecraft, ” Johns Hopkins APL Technical Digest, Vol. 12, No. 2, pp. 2–13, June 1973Google Scholar
- 1333).W. L. Ebert, S. J. Kowal, R. F. Sloan, “Operational NOVA Spacecraft Teflon Pulsed Plasma Thruster System, ” AIAA-89–2497, AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference, Monterey, CA, July 10–12, 1989Google Scholar
- 1334).Y. Brill, et al., “The Flight Application of a Pulsed Plasma Microthruster: the NOVA Satellite, ” AIAA-82–1956, 16th International Electric Propulsion Conference, Nov. 1982Google Scholar
- 1335).G. C. Kennedy, M. J. Crawford, “Innovations Derived from the Transit Program, ” Johns Hopkins APL Technical Digest, Volume 19, No. 1, 1998, pp. 27–35Google Scholar
- 1336).A. J. Tucker, “Computerized Ionospheric Tomography, ” John Hopkins APL Technical Digest, Vol. 19, No. 1, 1998, pp. 66–71Google Scholar
- 1337).L. J. Rueger, “Development of Receivers to Characterize Transit Time and Frequency Signals, John Hopkins APL Technical Digest, Vol. 19, No. 1, 1998, pp. 53–59Google Scholar
- 1338).See “Orbital Analysis” (Chapter 6.4, pp. 205 – 212) in ‘The Interdisciplinary Role of Space Geodesy, ’ Springer Verlag, 1989,Google Scholar
- 1339).“The Precise Range and Range Rate Equipment PRARE: Status Report on System Development, Preparations for ERS-1 and Future Plans, ” Submitted by F. Flechtner, K. Kaniuth, Ch. Reigber, H. Wilmes of DGFI, Second International Symposium on Precise Positioning with the Global Positioning System (GPS ’90), Sept. ’90, OttawaGoogle Scholar
- 1340).P. Hartl, C. Reigber “Das PRARE-System der ERS-1 Mission, ” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 156–162.Google Scholar