Satellite Radionavigation Systems

  • Herbert J. Kramer


Since 1994 the European Union (EU) has been pursuing a strategy aimed at enabling Europe to the development of a Global Navigation Satellite System (GNSS). In early 1999 the EU proposed a strategy with the goal to design, implement and operate its own constellation of navigation satellites within a program by the name of Galileo (in honor of Galileo Galilei, Feb. 151564 – Jan. 8.1642, Italian astronomer and physicist, founder of experimental physics and astronomy). On March 29, 1999, the EU Transport Ministers endorsed the proposed Galileo program at a meeting in Brussels. Major reasons for Europe’s decision to build its own navigation system are:
  • Current dependence on navigation systems of GPS and GLONASS that are run by military organizations without any means of international control.

  • Europe wants its own civil-controlled navigation system for political and security reasons. To be in a position to compete for a fair share in a large global navigation and communication market. The commitment to build and operate the Galileo navigation system represents a strategic, economic, and technological venture for Europe.

  • The requirement for safety-critical application services. Galileo should be able to provide a service with a certifiable performance level (which neither independent satellite navigation system can presently do) to support multimodal traffic, sufficient in particular in civil aviation, marine navigation and road transport.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1258).
    GNSS-1 (Global Navigation Satellite System-1). The first generation GNSS-1 comprises the following elements: GPS, GLONASS and their augmentation systems [WAAS (Wide Area Augmentation System) of the US, EGNOS (European Geostationary Navigation Overlay System) or Europe, and MSAS (Multi-Transport Satellite Augmentation System) of Japan]. The three segments of GNSS-1 are expected to be operational by 2003.Google Scholar
  2. 1259).
    GNSS-2 (Global Navigation Satellite System-2). The second generation GNSS comprises all elements of GNSS-1 plus Galileo. GNSS-2 is planned to be operational by 2008.Google Scholar
  3. 1260).
    Information provided by Hans L. Trautenberg of Astrium GmbH, Munich (viewgraph package), representing the ESA baseline concept as of Feb. 2001Google Scholar
  4. 1261).
    G. Salgado, S. Abbondanza, R. Blondel, S. Lannelongue, “A New Model — Constellation Availability, ” Galileo’s World, Spring 2001, pp. 30–35Google Scholar
  5. 1262).
    G. K. Crosby, W. S. Ely, K. W. McPherson, et al., “A Ground-based Regional Augmentation System (GRAS) — The Australian Proposal, ” ION-2000, Salt Lake City, UT, Sept. 19–22, 2000, pp. 713–721Google Scholar
  6. 1263).
    R. Loh, V. Wullschleger, B. Elrod, M. Lage, F. Haas, “The US Wide-Area Augmentation System (WAAS), ” Navigation ION, Vol. 42, No. 3, Fall 1995, pp, 435–465Google Scholar
  7. 1264).
    G. V. Kinal, O. Razumovsky, “Performance of the Inmarsat-3 Navigation Augmentation Payloads, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, Kansas City, MO, pp. 1285–1294Google Scholar
  8. 1265).
    T. Walter, A. Hansen, J. Blanch, et al, “Robust Detection of Ionospheric Irregularities, ” ION-2000, Salt Lake City, UT, Sept. 19–22, 2000, pp. 209–218Google Scholar
  9. 1266).
    J. Ceva et al., “Incorporation of Orbital Dynamics to Improve Wide-Area Differential GPS, ” Navigation ION, Vol. 44, No. 2, Summer 1997, pp. 171–213Google Scholar
  10. 1267).
  11. 1268).
    K. Gromov, D. Akos, S. Pullen, P. Enge, B. Parkinson, “GIDL: Generalized Interference Detection and Localization System, ” ION 2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 447–457Google Scholar
  12. 1269).
    A. Manz, K. Shallberg, Peter Shloss, “Improving WAAS Receiver Radio Frequency Interference Rejection, ” ION 2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 471–479Google Scholar
  13. 1270).
    E. Copros, J. Spiller, T. Underwood, Ch. Vialet, “An Improved Space Segment for the End-State WAAS and EG-NOS Final Operational Capability, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City, MO, pp.1119–1125Google Scholar
  14. 1271).
    S. Loddo, D. Flament, J. Benedicto, P. Michel, “EGNOS, the European Regional Augmentation to GPS and GLONASS, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City, MO, pp. 1143–1150Google Scholar
  15. 1272).
    J. Beale, P. Campagne, “European Commission Actions to Consolidate The European Contribution to a GNSS, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City, MO, pp. 1467–1471Google Scholar
  16. 1273).
  17. 1274).
    L Gauthier, P. Michel, J. Ventura-Traveset, J. Benedicto, “EGNOS: The First Step in Europe’s Contribution to the Global Navigation Satellite System, ” ESA Bulletin, No. 105, Feb. 2001, pp. 35–42Google Scholar
  18. 1275).
    J. Nieto, M. A. Molina, M. L. de Mateo, R. Roman, L. Andrada, “Assessment of EGNOS System and Performance: Early Test System, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, Kansas City, MO, pp. 1345–1354Google Scholar
  19. 1276).
    A. Cruz, J. Cosmen, J. M. Legido, J. Caro, H. Secretan, N. Suard, “EGNOS System Test Bed: Achievements and Ongoing Upgrades, ” ION-200G, Salt Lake City, UT, Sept. 19–21, 2000, pp. 199–208Google Scholar
  20. 1277).
    M. Kawai, H. Nakao, K. Wakasa, “GPS/SBAS Receiver Flight Test in Japan, ” ION GPS 2000, Sept. 19–22, 2000, Slat Lake City, UT, pp. 266–276Google Scholar
  21. 1278).
    “Understanding Signals from GLONASS Navigation Satellites, ” International Journal of Satellite Communications’, Vol. 7, 11–12, 1989, pp. 11–22Google Scholar
  22. 1279).
    “Russians Launch Trio of GLONASS Satellites, ” GPS World, January 1995, p. 15Google Scholar
  23. 1280).
    N. Yefimova, “Russia’s GLONASS System Awaits Upgrade, ” Space News, Aug. 13, 2001, p. 24Google Scholar
  24. 1281).
    N. L. Johnson, “GLONASS Spacecraft, ” GPS World, Nov. 1994, pp. 51–58Google Scholar
  25. 1282).
  26. 1283).
    Y. Gouzhva, I. Koudryavtsev, V Korniyenko, I. Pushkina, “GLONASS Receivers: An Outline, ” GPS World, January 1994, pp. 30–36Google Scholar
  27. 1284).
    P. N. Misra, E. T. Bayliss, R. R. LaFrey, M. M. Pratt, R. A. Hogaboom, R. Muchnik, “GLONASS Performance in 1992: A Review, ” GPS World, May 1993, pp. 28–38Google Scholar
  28. 1285).
    P. N. Misra, et al., “Integrated use of GPS and GLONASS: Transformation between WGS 84 and PZ-90, ” Proceedings of ION GPS-96, The Institute of Navigation, pp. 307–314, 1996. ( Scholar
  29. 1286).
    Courtesy of A. Selivanov, ISDE and B. Zhukov, IKI, MoscowGoogle Scholar
  30. 1287).
    B. W. Parkinson, J. J. Spilker Jr., P. Axelrad, P. Enge, “Global Positioning System: Theory and Applications, Vol. I and II, “ AIAA, 1996CrossRefGoogle Scholar
  31. 1288).
    “The NAVSTAR GPS System, ” AGARD Lecture Series No. 161, ISBN 92–835-04771, Sept. 1988Google Scholar
  32. 1289).
    “Understanding Signals from GLONASS Navigation Satellites, ” International Journal of Satellite Communications, Vol. 7 11–12, 1989, pp.11–22Google Scholar
  33. 1290).
    “Navstar, ” Jane’s Spaceflight Directory 1988–89, 4th Edition, pp. 404–405Google Scholar
  34. 1291).
    B. W Parkinson was the first director of JPO, located at SAMSO of the USAF in El Segundo, CAGoogle Scholar
  35. 1292).
    M. Shaw, P. Levin, J. Martel, “The DoD: Stewards of a Global Information Resource, the Navstar Global Positioning System, ” Proceedings of the IEEE, Vol. 87, No. 1, Jan. 1999, pp.; 16–23Google Scholar
  36. 1293).
    Note: The block-I satellites were actually preceded by the NTS (Navigation Technology Satellite) experimental series. NTS-1 was launched on July 14, 1974 (the first satellite to fly atomic clocks: two rubidium oscillators) NTS-2 was launched June 23, 1977 (first cesium clock in space).Google Scholar
  37. 1294).
    L. F. Wiederholt, E. D. Kaplan, “Understanding GPS, Principles and Applications, ” Ärtech House Inc., Boston, 1996, Chapter 3Google Scholar
  38. 1295).
    S/C drawing courtesy of J. Keating, Lockheed Martin Astro Space, Valley Forge, PAGoogle Scholar
  39. 1296).
    T. Hartman, L. R. Boyd, D. Koster, J. A. Rajan, J. Harvey, “Modernizing the GPS Block IIR Spacecraft, ” ION GPS 2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 2115–2121Google Scholar
  40. 1297).
    K. Sandhoo, D. Turner, M. Shaw, “Modernization of the Global Positioning System, ” ION-2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 2175–2183Google Scholar
  41. 1298).
    S. C. Fisher, K. Ghassemi, “GPS IIF — The Next Generation, ” Proceedings of the IEEE, Vol. 87, No. 1, Jan. 1999, pp. 24–47CrossRefGoogle Scholar
  42. 1299).
    K. Ghassemi, S. C. Fisher, “Performance Projections of GPS IIF, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, Kansas City, MO, pp. 407–415Google Scholar
  43. 1300).
    Ch. Shank, J. W. Lavrakas, “Inside GPS: The Master Control Station, ” GPS World, September 1994, pp. 46–54Google Scholar
  44. 1301).
    F. H. Bauer, K. Hartman, J P. How, et al., “Enabling Spacecraft Formation Flying through Spaceborne GPS and Enhanced Automation Technologies, ” Proceedings of the ION-GPS Conference, Nashville TN, Sept. 15, 1999Google Scholar
  45. 1302).
    “GPS — the Next Generation, ” GPS World, Nov. Dec. 1991, pp. 12–16Google Scholar
  46. 1303).
    Glen Gibbons, “What in the World!?!” GPS WORLD, April 1991, p. 21–24Google Scholar
  47. 1304).
    B. Tryggö, R. Bäckström, “Threading the Needle: Differential GPS on the Baltic Sea, ” in GPS World Sept. 1991, pp. 22–26Google Scholar
  48. 1305).
    “GPS is Newest Aid in Earthquake Forecasting, ” Space News, March 18–24 1991, pp. 22Google Scholar
  49. 1306).
  50. 1307).
    “Smart Policy: Make Best GPS Data Available to All, ” Space News, April 1–7 1991, pp. 15Google Scholar
  51. 1308).
  52. 1309).
    E. G. Lightsey, “Spacecraft Attitude Control Using GPS Carrier Phase, ” Chapter 16 of Global Positioning System: Theory and Applications, Vol. 2, ’ ALAA Volume 164Google Scholar
  53. 1310).
    C. E. Cohen, “Attitude Determination, ” Chapter 19 of Global Positioning System: Theory and Applications, Vol. 2, ’ AIAA Volume 164Google Scholar
  54. 1311).
    J. K. Brock, R. Fuller, et al., “GPS Attitude Determination and Navigation Flight Experiment, ” Proceedings of ION GPS-95, Sept. 12–15, 1995, Palm Springs, CA, Sept. 1995, pp. 545–554Google Scholar
  55. 1312).
    W. Johnson, “Attitude Adjustment, GPS Innovation keeps Satellites Oriented, ” Satellite Communications, June 1995, pp. 19–21Google Scholar
  56. 1313).
    R. Fuller, D. Hong, S. Hur-Diaz, J. Rodden, M. Tse, “GPS Tensor An Attitude and Orbit Determination System for Space, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, Kansas City, MO, pp. 299–311Google Scholar
  57. 1314).
    F. Bauer, E. Lightsey, et al., “Pre-Flight Testing of the SPARTAN GADACS Experiment, ” Proceedings of ION GPS-94, Salt Lake City, pp. 1233–1241Google Scholar
  58. 1315).
    F. H. Bauer, J. R. O’Donnell, “Space-Based GPS 1996 Mission Overview, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City MO, pp. 1293–1302Google Scholar
  59. 1316).
    M. E. Lisano, J. R. Carpenter, S. Gomez, “Navigation, Attitude Determination, and Multipath Analysis Results from the STS-77 GPS Attitude and Navigation Experiment (GANE), ” Navigation, Vol. 46, No. 3, Fall 1999, pp. 175–192Google Scholar
  60. 1317).
    R. C. Hart, K. R. Hartman, A. C. Long, T. Lee, D. H. Oza, “GPS Enhanced Orbit Determination Experiment (GEODE) on the SSTI Lewis Spacecraft, ” Proceedings of ION GPS-96, Sept. 17–20, 96, pp. 1303–1312Google Scholar
  61. 1318).
    J. R. O’Donnell, J. D. McCullough, E. G. Lightsey, R. G. Schnurr, L. Jackson, “Testing of GPS-Based Attitude Control Systems, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, pp. 1063–1072Google Scholar
  62. 1319).
    E. G. Lightsey, G. C. Blackburn, J. E. Simpson, “Going Up: A GPS Receiver Adapts to Space, ” GPS World, Sept. 2000, pp. 30–34Google Scholar
  63. 1320).
    S. F. Gomez, “Attitude Determination and Attitude Dilution of Precision (ADOP) Results for International Space Station Global Positioning System (GPS) Receiver, ” Proceedings of ION, Sept. 19–22, 2000, pp. 1995–2002Google Scholar
  64. 1321).
    J. Simpson, C. Campbell, E. G. Lightsey, L. Jackson, “Testing Results of the X-38 Crew Return Vehicle GPS Receiver, ” Proceedings of ION, Sept. 19–22, 2000, Salt Lake City, UT, pp. 2038–2046Google Scholar
  65. 1322).
    “International GPS Services for Geodynamics, ” 1994 Annual Report, September 1, 1995, IGS Central Bureau, edited by J. F. Zumberge, R. Liu, and R. E. NeilanGoogle Scholar
  66. 1323).
    G. Beutler, E. Brockmann, “Proceedings of the International GPS Service for Geodynamics (IGS) Workshop, ” March 25–26, 1993, Astronomical Institute, University of BernGoogle Scholar
  67. 1324).
    R. E. Neilan, J. F. Zumberge, G. Beutler, J. Kouba, “The International GPS Service: A Global Resource for GPS Applications and Research, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, pp. 883–889Google Scholar
  68. 1325).
    CIGNET Report, CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, June 1989, pp. 235–256Google Scholar
  69. 1326).
    RK. Enge, R.M. Kalafus, M.E Ruane, “Differential Operation of the Global Positioning System, ” IEEE Communications Magazine, July 1988, Vol. 26, No.7, pp. 48–59Google Scholar
  70. 1327).
    B. McGarigle, “Top 40 Hydrography: Surveying with FM-based DGPS, ” GPS World April 1993 pp. 37–40Google Scholar
  71. 1328).
    “California-Based Firms Offer Highly Accurate GPS Services, ” Space News, Nov. 29-December 5, 1993, p. 7Google Scholar
  72. 1329).
    R. J. Danchik, “An Overview of Transit Development, ” Johns Hopkins APL Technical Digest, Vol. 19, No. 1, 1998, pp. 18–26Google Scholar
  73. 1330).
    W. H. Guier, G. C. Weiffenbach, “Genesis of Satellite Navigation, ” Johns Hopkins APL Technical Digest, Vol. 18, No. 2, 1997, pp. 178–181Google Scholar
  74. 1331).
    Note: The very first Transit satellites transmitted signals at four frequencies: 54, 162, 216, and 324 MHz. The signals provided experimental data to evaluate ionospheric effects as a function of frequency. The final design is based on a two-frequency method for correcting ionospheric error.Google Scholar
  75. 1332).
    J. Dassoulas, “The TRIAD Spacecraft, ” Johns Hopkins APL Technical Digest, Vol. 12, No. 2, pp. 2–13, June 1973Google Scholar
  76. 1333).
    W. L. Ebert, S. J. Kowal, R. F. Sloan, “Operational NOVA Spacecraft Teflon Pulsed Plasma Thruster System, ” AIAA-89–2497, AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference, Monterey, CA, July 10–12, 1989Google Scholar
  77. 1334).
    Y. Brill, et al., “The Flight Application of a Pulsed Plasma Microthruster: the NOVA Satellite, ” AIAA-82–1956, 16th International Electric Propulsion Conference, Nov. 1982Google Scholar
  78. 1335).
    G. C. Kennedy, M. J. Crawford, “Innovations Derived from the Transit Program, ” Johns Hopkins APL Technical Digest, Volume 19, No. 1, 1998, pp. 27–35Google Scholar
  79. 1336).
    A. J. Tucker, “Computerized Ionospheric Tomography, ” John Hopkins APL Technical Digest, Vol. 19, No. 1, 1998, pp. 66–71Google Scholar
  80. 1337).
    L. J. Rueger, “Development of Receivers to Characterize Transit Time and Frequency Signals, John Hopkins APL Technical Digest, Vol. 19, No. 1, 1998, pp. 53–59Google Scholar
  81. 1338).
    See “Orbital Analysis” (Chapter 6.4, pp. 205 – 212) in ‘The Interdisciplinary Role of Space Geodesy, ’ Springer Verlag, 1989,Google Scholar
  82. 1339).
    “The Precise Range and Range Rate Equipment PRARE: Status Report on System Development, Preparations for ERS-1 and Future Plans, ” Submitted by F. Flechtner, K. Kaniuth, Ch. Reigber, H. Wilmes of DGFI, Second International Symposium on Precise Positioning with the Global Positioning System (GPS ’90), Sept. ’90, OttawaGoogle Scholar
  83. 1340).
    P. Hartl, C. Reigber “Das PRARE-System der ERS-1 Mission, ” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 156–162.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Herbert J. Kramer
    • 1
  1. 1.GilchingGermany

Personalised recommendations