Advertisement

Geodynamic/Earth-System Missions

  • Herbert J. Kramer
Chapter

Abstract

CHAMP is a German BMBF-funded geophysical minisatellite mission of GFZ (GeoFors-chungsZentrum, Potsdam, Germany) in cooperation with DLR. The satellite was built by the German space industry with the intent to foster high-tech capabilities especially in the East-German space industry. The S/C prime contractor is DJO (Jena Optronic GmbH) in Jena, a daughter of DASA (now Astrium). The overall science objectives are in the following fields of investigation:
  • Global long- to medium-wavelength recovery of the static and time variable earth gravity field from orbit perturbation analyses for use in geophysics (solid Earth), geodesy (reference surface), and oceanography (ocean currents and climate), supported by a feasibility test of GPS altimetry for ocean and ice surface monitoring

  • Global Earth magnetic field recovery (solid Earth and solar-terrestrial physics)

  • Atmosphere/ionosphere sounding by GPS radio occultation with applications in weather forecasting, navigation, space weather, and global climate change.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 987).
    A. Zaglauer, W. Pitz, “CHAMP-The First FLEXBUS in Orbit,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 105–109Google Scholar
  2. 988).
    Ch. Reigber, P. Schwintzer, “A Challenging Microsatellite Payload for Geophysical Research and Application,” in: Small Satellites for Remote Sensing, Space Congress ’95, Bremen, May 24–25, 1995, pp. 83–89, European Space Report, Munich, 1995Google Scholar
  3. 989).
    Ch. Reigber, R. Casper, W. Päffgen, “The CHAMP Geopotential Mission,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 25–28Google Scholar
  4. 990).
    Ch. Schmitt, H. Bauer, “CHAMP Attitude and Orbit Control System,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 269–272Google Scholar
  5. 991).
    http://op.gfz-potsdam.de/champ/systems/index_SYSTEMS.html
  6. 992).
    Information provided by T. P. Yunck of NASA/JPLGoogle Scholar
  7. 993).
    T. Meehan, C. Duncan, et al., “GPS On A Chip — An Advanced GPS Receiver for Spacecraft,” Proceedings of the ION GPS-97 Conference, Sept. 16–19, 1997, Kansas City, MO, pp. 1509–1517Google Scholar
  8. 994).
    P. Touboul, B. Foulon, G. M. LeClerc, “STAR, The Accelerometer of the Geodesic Mission CHAMP,” Proceedings of the 49th IAF Congress, Melbourne, Australia, Sept. 28 — Oct. 2, 1998, IAF-98-B.3.07Google Scholar
  9. 995).
    http://www.vsbs.plh.af.mil/projects/didm/didm.html
  10. 996).
    D. J. Wingham, “The first of ESA’s Opportunity Missions: CryoSat,” ESA Earth Observer Quarterly, No 63, Sept. 1999, pp. 21–24Google Scholar
  11. 997).
    http://www.estec.esa.nl/explorer/cryosat/
  12. 998).
    L. Rey, P. de Chateau-Thierry, L. Phalippou, C. Mavrocordatos, R. Francis, “SIRAL, a High Spatial Resolution Radar Altimeter for the CryoSat Mission,” Proceedings of IGARSS 2001, Sydney, Australia, July 9–13, 2001Google Scholar
  13. 999).
    L. Phalippou, L. Rey, P. de Chateau-Thierry, “Overview of the Performances and Tracking Design of the SIRAL Altimeter for the CryoSat Mission,” Proceedings of IGARSS 2001, Sydney, Australia, July 9–13, 2001Google Scholar
  14. 1000).
    M. Sasaki, H. Hashimoto, “Launch and Observation of the Experimental Geodetic Satellite of Japan’, IEEE Transactions on Geoscience and Remote Sensing, Volume 25, No. 5, Sept. 1987Google Scholar
  15. 1001).
    S.K. Tatevian, A.N. Zakharov, “The Geodynamical Satellite ETALON,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, 1989, pp. 3–9Google Scholar
  16. 1002).
    S.K. Tatevian, “The Space Geodetic Complex GEO-IK,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, 1989, pp. 9–11Google Scholar
  17. 1003).
    JANE’s Spaceflight Directory, 1988–89, pp. 332–333Google Scholar
  18. 1004).
    “More than Thirty Years of Pioneering Space Activities,” ESA publication BR-142, 1999, compiled by Andrew Wilson, pp. 46–49Google Scholar
  19. 1005).
    GEOS — Projects under Development, ESA Report to COSPAR, Jan. 1977, pp. 112–123Google Scholar
  20. 1006).
    “GEOS,” Interavia Space Directory 1992–93, pp. 155–156Google Scholar
  21. 1007).
    H.R. Stanley, “The GEOS 3 Project,” Journal of Geophysical Research, July 30, 1979, pp. 3779–3783Google Scholar
  22. 1008).
    P. Argentiero, et al., “Results of GEOS 3/ATS-6 Satellite-to-Satellite Tracking Orbit Determination Experiment,” Journal of Geophysical Research, Vol. 84, No. B8, pp. 3921–3925, 1979.CrossRefGoogle Scholar
  23. 1009).
    “The Navy GEOSAT Mission: An Overview,” Johns Hopkins APL Technical Digest, Volume 8, No. 2, 1987Google Scholar
  24. 1010).
    “The Navy GEOSAT Mission Radar Altimeter Satellite Program,” in Monitoring Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, 1985 AIAA, pp. 440–463Google Scholar
  25. 1011).
    J. J. Jensen, F. R. Wooldridge, “The Navy GEOSAT Mission: An Introduction”; McConathy, D. R. and C. C. Kilgus, “The Navy GEOSAT Mission: An Overview”, and W. E. Frain, M. H. Barbagallo, R. J. Harvey, “The Design and Operation of GEOSAT”, all in Johns Hopkins APL Technical Digest, Volume 8, No. 2, 1987Google Scholar
  26. 1012).
    J. L MacArthur, P. C. Marth, Jr., J. G. Wall, “The GEOSAT Radar Altimeter,” Johns Hopkins APL Technical Digest, Volume 8, No. 2, 1987Google Scholar
  27. 1013).
    D. R. Mantripp, J. K. Ridley, C. G. Rapley, “Antarctic map from the Geosat Radar Altimeter Geodetic Mission,” ESA Earth Observation Quarterly, No. 37–38, May-June 1992, pp. 6–10Google Scholar
  28. 1014).
    Information provided by B. Barry of Ball Aerospace, Boulder, CO, and by Ch. Kilgus of JHU/APLGoogle Scholar
  29. 1015).
    Information provided by Ch. Reigber and R. König of GFZ PotsdamGoogle Scholar
  30. 1016).
  31. 1017).
    H. Rebhan, M. Aguirre, J. Johannessen, “The Gravity Field and Steady-State Ocean Circulation Explorer Mission — GOCE,” ESA Earth Observation Quarterly, No. 66, July 2000, pp. 6–11Google Scholar
  32. 1018).
    Information provided by Mark Drinkwater of ESA/ESTECGoogle Scholar
  33. 1019).
    “Gravity Field and Steady-State Ocean Circulation Mission,” ESA publication SP-1233 (1), July 1999Google Scholar
  34. 1020).
    http://www.estec.esa.n1/vrwww/explorer/GRAVITY.html#introduction
  35. 1021).
    “Testing Einstein with Orbiting Gyroscopes, Gravity Probe B,” Stanford University brochureGoogle Scholar
  36. 1022).
    Information provided by C. W. F. Everitt of Stanford University, Stanford, CAGoogle Scholar
  37. 1023).
    S. Buchman, C. W. F. Everitt, B. Parkinson, et al., “The Gravity Probe B Relativity Mission,” Advances in Space Research, Vol. 25, No. 6, 2000, pp. 1177–1180CrossRefGoogle Scholar
  38. 1024).
    J. A. Lipa, D. H. Gwo, R. K. Kirschman, “Status of the cryogenic inertial reference system for the Gravity Probe B mission,” SPIE, Vol. 1765 Cryogenic Optical Systems and Instruments V, 23–24 July 1992, San Diego, pp. 85–93Google Scholar
  39. 1025).
    C. W. F. Everitt, D. Bardas, Y. M. Xiao, et al., “Three Papers on Gravity Probe B,” presented at The Sixth Marcel Grossmann Meeting on Relativity, Kyoto, Japan, June 23–29, 1991Google Scholar
  40. 1026).
    M. Tapley, et al., “Gradiometry Coexperiments to the Gravity Probe B and Step Missions,” Advanced Space Research, Vol. 11, No. 6, 1991, pp. 179–182CrossRefGoogle Scholar
  41. 1027).
    R. F. C. Vessot, M. W. Levine, “A Test of the Equivalence Principle Using a Space-Borne Clock,” General Relativity and Gravitation, Vol. 10, No. 3, 1979, pp. 181–204CrossRefGoogle Scholar
  42. 1028).
    Note: The first drag-free satellite to fly a completely gravitational orbit was Triad-1 of the US Navy, built by JHU/ APL and launched Sept. 2, 1972. The development of the drag-free system on Triad-1 is a direct flight experiment of George Pugh’s proposal.Google Scholar
  43. 1029).
    C. W. F. Everitt, S. Buchman, D. B. DeBra, G. M. Keiser, J. M. Lockhart, B. Muhlfelder, B. W. Parkinson, J. P. Turneaure, “Gravity Probe B: Countdown to Launch,” NASA contract NAS8–39225 paper, 2000Google Scholar
  44. 1030).
    G. M. Reynolds, R. H. Vassar, R. T. Parmley, et al., “Payload and Spacecraft Technology for GP-B,” Advances in Space Research, Vol. 25, No 6, 2000, pp. 1193–1197CrossRefGoogle Scholar
  45. 1031).
    S. Buchman, C. W. F. Everitt, B. Parkinson, et al., “Gyroscopes and Charge Control for the Relativity Mission Gravity Probe B,” Advances in Space research, Vol. 25, No 6, 2000, pp. 1181–1184CrossRefGoogle Scholar
  46. 1032).
    Note: PODS = Passive Orbital Disconnect StrutsGoogle Scholar
  47. 1033).
    When a superconductor like niobium spins, it generates a magnetic field effect known as the ‘London moment,’ after physicist Fritz London (1900–1954).Google Scholar
  48. 1034).
    C. W. Hughes, C. Wunsch, V. Zlotnicki, “Satellite Peers through the Oceans from Space,” EOS Transmissions of AGU, Vol. 81, No. 7, Feb. 15, 2000, p. 68Google Scholar
  49. 1035).
  50. 1036).
  51. 1037).
    Jason-1 named after the mythological hero who led the Argonauts on the adventurous and hazardous search for the Golden Fleece which they found and returned. “Jason” symbolizes both the hard-fought quest for a worthy goal and civilization’s fascination with the ocean and its mysteries.Google Scholar
  52. 1038).
    M. Lefebvre, “A New Voyage for Jason,” CNES/AVISO Newsletter Nr. 5, April 1997Google Scholar
  53. 1039).
    F. Parisot, T. Lafon, “The JASON-1 Satellite Design and Development Status,” Proceedings of the 4th International Symposium on Small Satellites Systems and Services, Sept. 14–18, 1998, Amibes Juan les Pins, FranceGoogle Scholar
  54. 1040).
    P. Escudier, G. Kunstmann, F. Parisot, et al., “Jason System Overview and Status,” CNES/AVISO Newsletter No. 7, Jan. 2000, pp. 9–15Google Scholar
  55. 1041).
  56. 1042).
    T. Lafon, F. Parisot, “The Jason-1 satellite design and development status,” Proceedings of the AIAA/USU Conference on Small Satellites, Logan, UT, Aug./Sept. 1998, SSC98-V-6Google Scholar
  57. 1043).
    “Jason-1,” ESE Reference Handbook of NASA, 1999, pp. 120–123Google Scholar
  58. 1044).
    L. Rey, G. Carayon, et al., “Poseidon-2, the new generation altimeter for JASON mission,” Proceedings of IGARSS’99, Hamburg, Vol. III, June 28–July 2, 1999, pp. 1503–1505Google Scholar
  59. 1045).
    Y. Menard, Ph. Escudier, “Cruising the Ocean from Space with Jason-1,” EOS/AGU Transactions, Vol. 81, No 34, Aug. 22, 2000, p. 1 and pp. 390–391Google Scholar
  60. 1046).
    Jane’s Spaceflight Directory 1988–89, Fourth Edition, pp. 83–84Google Scholar
  61. 1047).
    R. Kolenkiewicz, S. Zerbini, “LAGEOS-II: A collaborative NASA-ASI Mission,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, June 1989, pp. 13–18Google Scholar
  62. 1048).
    “Columbia Successfully Lofts Italian Lageos Satellite,” Space News, Oct. 26-Nov. 1, 1992, p. 13 1049)NASA/ASI Lageos II brochureGoogle Scholar
  63. 1050).
    F. F. Mobley, L. D. Eckard, G. H. Fountain, G. W. Ousley, “Magsat — A New Satellite to Survey the Earth’s Magnetic Field,” IEEE Transactions on Magnetics, Vol. Mag. 16, No. 5, September 1980, pp. 758–760Google Scholar
  64. 1051).
    R. Langel, G. Ousley, J. Berbert, “The MAGSAT Mission,” Geophysical Research Letters, Vol. 9, No. 4, April 1982, pp. 243–245CrossRefGoogle Scholar
  65. 1052).
    R. Langel, “The Magnetic Earth as Seen from Magsat, Initial Results,” Geophysical Research Letters, Vol. 9, No.4, April 1982, pp. 239–242CrossRefGoogle Scholar
  66. 1053).
    R. Peresty, L. Sehnal, M. Chvojka, P. Dostal, “MIMOSA Satellite,” Acta Astronautica, Vol. 46, No 2–6, 2000, pp. 345–349CrossRefGoogle Scholar
  67. 1054).
    L. Sehnal, R. Peresty, L. Pospisilova, P. Dostal, “Software Features for the Orbital Dynamics of the MIMOSA Satellite,” Proceedings of the 51st IAF Congress, Oct. 2–6, 2000, Rio de Janeiro, Brazil, IAF-00-A.5.03Google Scholar
  68. 1055).
    L. Sehnal, R. Peresty, L. Pospisilova, A. Kohlhase, “Mission Analysis of the MIMOSA Satellite,” Proceedings of the 49th IAF Congress, Sept. 28 — Oct. 2, 1998, Melbourne, AustraliaGoogle Scholar
  69. 1056).
    L. Sehnal, L. Pospisilova, R. Peresty, P. Dostal, A. Kohlhase, “MIMOSA — A Satellite Measuring Orbital and Atti-tudinal Accelerations caused by Non-Gravitational Forces,” Advances in Space Research, Vol. 23, No 4, 1999, pp. 705–714CrossRefGoogle Scholar
  70. 1057).
    http://www.asu.cas.cz/~macek/nep.html
  71. 1058).
    I. Sehnal, R. Peresty, L. Pospisilova, “Project MIMOSA — Final Stage of the Satellite Fabrication,” 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 241–244Google Scholar
  72. 1059).
    P. Lundahl Thomson, F. Hansen, “Danish Ørsted Mission In-Orbit Experiences and Status of the Danish Small Satellite Program,” Proceedings of the 13th Annual AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-I-8Google Scholar
  73. 1060).
    Information provided by F. Primdahl of DTU, Lyngby, DenmarkGoogle Scholar
  74. 1061).
    P. Donaldson, “Mapping Magnetism,” Space, April 1993Google Scholar
  75. 1062).
    T. Neubert, M. Mandea, G. Hulot, R. von Frese, F. Primdahl, et al., “0rsted Satellite Captures High-Precision Geomagnetic Field Data,” AGU/EOS, Vol. 82, No 7, Feb. 13, 2001Google Scholar
  76. 1063).
    http://www.dmi.dk/projects/oersted/
  77. 1064).
    J. L. Joergensen, C. C. Liebe, “The Advanced Stellar Compass, Development and Operations,” Acta Astronautica, Vol. 39, No. 9–12, 1996, pp. 775–783CrossRefGoogle Scholar
  78. 1065).
    A. Eisenman, C. C. Liebe, “Operation and Performance of a Second Generation,” Solid-State, Star Tracker, The ASC, Acta Astronautica, Vol. 39, No 9–12, 1996, pp. 697–705CrossRefGoogle Scholar
  79. 1066).
    M. Lefebvre, “Stella,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, 1989, pp. 25–32Google Scholar
  80. 1067).
    ‘Topex-Poseidon Partners Discuss Sequel’, Space News, Aug. 17–23, 1992, p. 3Google Scholar
  81. 1068).
    “Predicted Topex Positioning Accuracy with Differential GPS Techniques,” presented at, and published in the ‘Proceedings of the first International Symposium on Precise Orbit Positioning with GPS’ April 15, 1985Google Scholar
  82. 1069).
    Lee-Lueng Fu, M. Lefebvre, “TOPEX/Poseidori: Precise Measurement of Sea Level From Space,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Missions, June 1989, pp. 51–54Google Scholar
  83. 1070).
    ‘Currents’ — the JPL Tbpex/Poseidon Newsletter, March 1990, Issue 1Google Scholar
  84. 1071).
    Topex/Poseidon Science Investigation Plan, NASA (Document Resource Facility), Sept. 1, 1991Google Scholar
  85. 1072).
    Ch. A. Yamarone, et al., “TOPEX/Poseidon Mission Global Measurements of Sea Level at Unprecedented Accuracy,” 45th Congress of the International Astrohautical Federation, Oct. 9–14, 1994, JerusalemGoogle Scholar
  86. 1073).
    TOPEX/Poseidon Internet homepageGoogle Scholar
  87. 1074).
    A. R. Zieger, et al., “NASA Radar Altimeter for the TOPEX/Poseidon Project,” Proceedings IEEE, Vol. 79, No. 6, June 1991, pp. 810–826CrossRefGoogle Scholar
  88. 1075).
    “Other Satellite-Based Microwave Systems,” Lecture Notes in Earth Sciences — The Interdisciplinary Role of Space Geodesy, Springer Verlag I. Mueller, S. Zerbini, chap. 5, p. 161Google Scholar
  89. 1076).
    DORIS — Precision Satellite-Based Orbit Determination, CNES brochureGoogle Scholar
  90. 1077).
    Information provided by C. Smith of EOS Pty Limited, Canberra, AustraliaGoogle Scholar
  91. 1078).
    Armand Fizeau (1819 – 1896) is a French physicist noted for the first experimental determination of the speed of light in 1849. He used a beam of light reflected from a mirror 8 km away. The beam passed through the gaps between the teeth of a rapidly rotating wheel. The speed of the wheel was increased until the returning light passed through the next gap and could be seen. Then “c” was calculated to be 315,000 km/s. Leon Foucault improved on this a year later by using rotating mirrors and got the much more accurate answer of 298,000 km/s. Fizeau’s technique was good enough to confirm that light travels slower in water than in air.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Herbert J. Kramer
    • 1
  1. 1.GilchingGermany

Personalised recommendations