Advertisement

Earth Observation/Monitoring Missions

  • Herbert J. Kramer
Chapter

Abstract

ADEOS = Advanced Earth Observing Satellite. Japanese (NASDA) satellite mission.591) Objective: Global observation of land, ocean and atmospheric processes (ocean color and sea surface temperature). In addition, communication experiments are planned for the study (feasibility) of interorbit links, called IOCS (Inter-Orbital Communication Subsystem). Launch with H-II launch vehicle from Tanegashima Space Center, Japan, on August 17, 1996592)

References

  1. 591).
    NASDA handout at the CEOS WGD-10 Meeting in Annapolis MD, April 16–19, 1991Google Scholar
  2. 592).
    In Japan the ADEOS satellite is also referred to as ‘MIDORI’, meaning ‘green’.Google Scholar
  3. 593).
    “ADEOS,” NASDA brochure, 1993Google Scholar
  4. 594).
    “Special issue on ADEOS,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No 3, May 1999, Part II of two partsGoogle Scholar
  5. 595).
    ADEOS Reference Handbook, 1996, online available at http://www.eorc.nasda.go.jp/ADEOS/Products/Handbook.html
  6. 596).
    F. M. Naderi, M. H. Freilich, D. G. Long, “Spaceborne Radar Measurement of Wind Velocity Over the Ocean -An Overview of the NSCAT Scatterometer System,” Proceedings of IEEE, Vol. 79, No. 6, June 1991, pp. 850–866Google Scholar
  7. 597).
    P. Y. Deschamps, F. M. Bréon, et al., “The POLDER mission: Instrument characteristics and; scientific objectives,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, 1994, pp. 598–615Google Scholar
  8. 598).
    P. Y. Deschamps, M. Herman, A. Podaire, M. Leroy, M Laporte, P. Vermande, “A Spatial Instrument for the Observation of Polarization and Directionality of Earth Reflectances: POLDER,” IGARSS ′90 Conference Proceedings, Washington, D. C.Google Scholar
  9. 599).
    H. Kobayashi, T. Ogawa, et al., “IMG, precursor of the high-resolution FTIR on the satellite,” SPIE Proceedings, Vol. 3501, Optical Remote Sensing of the Atmosphere and Clouds, Beijing, Sept. 15–17, 1999, pp. 23–33Google Scholar
  10. 600).
    “Upper Atmosphere Monitoring with ADEOS — ILAS and RIS,” EA/NIES brochure provided by Y. Sasano of NIESGoogle Scholar
  11. 601).
    “Ozone Layer Observation by Satellite Sensors,” Proceedings of the International Workshop on Global Environment and Earth Observing Satellite Sensors, December 8–9, 1993, Tokyo, JapanGoogle Scholar
  12. 602).
    Y. Sasano, et al., “ILAS and RIS for ADEOS,” SPIE, Vol. 1490, 1991, pp. 233–242Google Scholar
  13. 603).
    “Retroreflector-In-Space for ADEOS: Earth-Space-Earth Laser Long-Path Absorption Measurements of Atmospheric Trace Species,” Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. 488–490Google Scholar
  14. 604).
    A. Minato, N. Sugimoto, S. Sasano, “Optical Design of Cube-Corner Retroreflectors Having Curved Mirror Surfaces,” Applied Optics, Vol. 31, 1992, pp. 6015–6020Google Scholar
  15. 605).
    “Monitoring the Earth Environment from Space,” NASDA BulletinGoogle Scholar
  16. 606).
    M. Nakajima, Y. Ito, H. Maejima, Y. Kojima, “The Development of AMSR and GLI for ADEOS-II,” presented at the 45th Congress of the International Astronautical Federation, October 9–14, 1994, Jerusalem, IsraelGoogle Scholar
  17. 607).
    T. Y. Nakajima, et al., “Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations,” Applied Optics, Vol. 37, No. 15, May 20, 1998, 3149–3163Google Scholar
  18. 608).
    M. W. Spencer, C. Wu, D. G. Long, “Tradeoffs in the Design of a Spaceborne Scanning Pencil Beam Scatterometer: Application to Sea Winds,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No 1, Jan. 1997, pp. 115–120Google Scholar
  19. 609).
    B. D. Boller, et al., “The Development of the SeaWinds Scatterometer Electronics Subsystem (SES),” Proceedings of IGARSS′96, Vol. 1, pp. 269–272Google Scholar
  20. 610).
    Information provided by Y. Sasano of NIES (National Institute for Environmental Studies)Google Scholar
  21. 611).
    Y. Sasano, et al., “ILAS-II Instrument and Data Processing System for Stratospheric Ozone Layer Monitoring”, Proceedings of SPIE, Vol.4150, pp.106–114, 2001Google Scholar
  22. 612).
  23. 613).
  24. 614).
    http://www.eorc.nasda.go.jp/ALOS/set_about.html
  25. 615).
    T. Hamazaki, “Overview of the Advanced Land Observing Satellite (ALOS): Its Mission Requirements, Sensors, and a Satellite System,” presented to ISPRS Joint Workshop “Sensors and Mapping From Space 1999,” International Society for Photogrammetry and Remote Sensing (ISPRS), Sept. 27–30, 1999Google Scholar
  26. 616).
    Y. Osawa, H. Wakabayashi, K. Toda, T. Hamazaki, “Advanced Land Observing Satellite (ALOS): Mission Requirements, Payloads and Satellite System,” paper of NASDA provided by K. MisawaGoogle Scholar
  27. 617).
    Information provided by the NASDA ALOS team (Naoto Matsuura) during the review process of my ALOS draftGoogle Scholar
  28. 618).
    “Soviets Launch Largest Earth Resources Satellite on Modified Salyut Platform,” Aviation Week & Space Technology/April 8, 1991, pp. 21–22Google Scholar
  29. 619).
    “Almaz to add Dimension to Earth Study,” Space News, March 18–24, 1991, p. 1Google Scholar
  30. 620).
    “ALMAS — Sowjetischer Erdsatellit mit Synthetic Aperture Radar zur Erderkundung,” IKF Berlin, 1990, aus der Reihe: Informationen aus der internationalen Zusammenarbeit.Google Scholar
  31. 621).
    “Almaz to add Dimension to Earth Study,” Space News, March 18–24, 1991, p. 1Google Scholar
  32. 622).
    “Sowjetisches Weltraumauge sammelt Ströme digitaler Daten,” VDI Nachrichten, 21. Dez., 1990, Seite 20Google Scholar
  33. 623).
    “Almaz Falls from Orbit,” Space News, Oct 26-Nov. 1, 1992, p. 1Google Scholar
  34. 624).
    I. Iqbal, A. V. Qureshi, A. S. Ahmed, “SUPARCO BADR Satellite,” International Workshop on Low-Cost Space Missions, Islamabad, Pakistan, Nov. 24 to Dec. 4, 1999Google Scholar
  35. 625).
    http://www.sil.com/PROJECTS.htm
  36. 626).
    http://www.ssd.rl.ac.uk/ssd/ccdtg/BADR-B.htm
  37. 627).
    Information provided by George Joseph of ISROGoogle Scholar
  38. 628).
    “Bhaskara — Satellite for Earth Observations,” ISRO publication, June 1979Google Scholar
  39. 629).
    Aryabhata (476–550) and Bhaskara (1114–1185) were two ancient mathematicians and astronomers of India. Aryabhata is the earliest Hindu mathematician whose work and history are available to modern scholars. He was one of the first known to use algebra. Bhaskara (“The Learned”) was the leading mathematician of the 12th century, who wrote the first work with full and systematic use of the decimal number system.Google Scholar
  40. 630).
    In the Sanskrit language, SAMIR means “breeze”Google Scholar
  41. 631).
    Zhu Yilin, “Ziyuan-1, China’s First Earth Resources Satellite (CBERS),” Earth Space Science Review, July-September 1994, Vol. 3, No. 3, pp. 16–19Google Scholar
  42. 632).
    “The China-Brazil Earth Resources Satellite Program,” paper provided by G. Santana of INPEGoogle Scholar
  43. 633).
    “CBERS Spacecraft: Conception and Design,” paper presented by E. A. Parada Tude of INPE and by C. Quinnan of CAST at the 1st Brazilian Symposium of Aerospace Technology, Sao Jose dos Campos, Aug. 27–31, 1990Google Scholar
  44. 634).
    G. K. Rayalu, et al., “Multispectral and Multitemporal Optical Sensors of CBERS,” INPE internal paperGoogle Scholar
  45. 635).
    http://www.inpe.br/programas/cbers/english/index.html
  46. 636).
    C. de Oliveira Lino, M. G. Rodrigues Lima, G. L. Hubscher, “CBERS — An International Space Cooperation Program,” Acta Astronautica, Vol. 47, No 2–9, 2000, pp. 559–564Google Scholar
  47. 637).
    D. Lin, S. Cui, “CCD Camera for CBERS,” Proceedings of the Asian Conference on Remote Sensing, Hongkong, Nov. 1999, pp. 285–288Google Scholar
  48. 638).
    W. Huaiyi, M. Wenpo, “The IRMSS for CBERS,” Proceedings of the Asian Conference on Remote Sensing, Hongkong, Nov. 1999, pp. 902–905Google Scholar
  49. 639).
    Information provided by Luiz A. Bueno of INPEGoogle Scholar
  50. 640).
    R. A. McDonald, “CORONA: Success for Space Reconnaissance, A Look into the Cold War, and a Revolution for Intelligence,” PE&RS, Vol. 61, No. 6, 1995, pp. 689–719Google Scholar
  51. 641).
    R. A. McDonald, “Opening the Cold War Sky to the Public: Declassifying Satellite Reconnaissance Imagery,” PE&RS, Vol. 61, No. 4, 1995, pp. 385–390Google Scholar
  52. 642).
    J. Leachtenauer, K. Daniel, T. Vogl, “Digitizing Satellite Imagery: Quality, and Cost Considerations,” PE&RS January 1998, pp. 29–34Google Scholar
  53. 643).
    J. T. Richelson, “Scientists in Black,” Scientific American, Feb. 1998, pp. 38–45Google Scholar
  54. 644).
    “The ESA Earth Observation Programme and its Role in Global Remote Sensing,” P. Goldsmith, Proceedings of the Twenty-Third International Symposium of Remote Sensing of the Environment,” Vol. I, ERIM, Ann Arbor, MI, pp. 125–137.Google Scholar
  55. 645).
    Programme Proposal for the first Polar Orbit Earth-Observation Mission using the Polar Platform, Part 1, ESA paper, 31–08–89Google Scholar
  56. 646).
    Objectives and Strategy for the Earth-Observation Programme of the European Space Agency, ESA, Oct. 88Google Scholar
  57. 647).
    Polar Platform Concept Evaluation, ESA paper, Sept. 25, 1989Google Scholar
  58. 648).
    Programme Proposal for the first ESA Polar Platform, ESA/PB-EO (89) 32, Sept. 1, 1989Google Scholar
  59. 649).
    Programme Proposal for the Development and Exploitation of the First Polar Orbit Earth-Observation Mission (POEM-1) using the Polar Platform, ESA/POEM 1, Issue 1, Oct. 28, 1991, Part 1, Issue 1, Oct. 30, 1991, Part 2Google Scholar
  60. 650).
    ENVISAT Special Issue, ESA Bulletin No 106, June 2001Google Scholar
  61. 651).
    “ENVISAT — Europe’s Earth Observation Mission for the new Millennium,” ESA Earth Observation Quarterly, No. 60, 1998Google Scholar
  62. 652).
  63. 653).
    J. Louet, “The Envisat Mission and System,” ESA Bulletin No 106, June 2001, pp. 11–25Google Scholar
  64. 654).
    P. A. Dubock, F. Spoto, J. Simpson, D. Spencer, E. Schutte, H. Sonntag, “The Envisat Satellite and its Integration,” ESA Bulletin, No 106, June 2001, pp. 26–45Google Scholar
  65. 655).
    “ENVISAT: Mission and System Summary,” ESA brochure, March 1998Google Scholar
  66. 656).
    P. Soerensen, A. Rudolph, L. O’Rourke, T. Beck, X. Marx, et al., The Flight Operations Segment, ESA Bulletin, No 106, June 2001, pp. 88–95Google Scholar
  67. 657).
    F. Martin Crespo, J.-P. Guignard, C. Garrido, M. Irle, “The Payload Data Segment,” ESA Bulletin, No 106, June 2001, pp. 96–102Google Scholar
  68. 658).
    J.-L. Bézy, S. Delwart, M. Rast, “MERIS — A New Generation of Ocean-Color Sensor onboard ENVISAT,” ESA Bulletin, No 103, August 2000, pp. 48–56Google Scholar
  69. 659).
    “MERIS Medium Resolution Imaging Spectrometer,” ESA brochureGoogle Scholar
  70. 660).
    J.-L. Bézy, G. Gourmelon, R. Bessudo, G. Baudin, H. Sonntag, S. Weiss, “The ENVISAT Medium Resolution Imaging Spectrometer (MERIS), Proceedings of IGARSS′99, Vol. 2, pp. 1432–1434, Hamburg, June 28–July 2, 1999Google Scholar
  71. 661).
    M. Morel, J. L. Bézy, F. Montagner, A. Morel, J. Fischer, “Envisat’s Medium-Resolution Imaging Spectrometer,” ESA Bulletin, No. 76, November 1993, pp. 40–46Google Scholar
  72. 662).
    G. Levrini, E. Attema, “The Commissioning Phase and the Calibration/Validation Activities,” ESA Bulletin, No 106, June 2001, pp. 109–117Google Scholar
  73. 663).
    G. Levrini, E. Attema, “The Envisat Calibration and Validation Approach,” ESA Earth Observation Quarterly, No 67, Oct. 2000, pp. 9–16Google Scholar
  74. 664).
    M. Endemann, P. Garé, D. J. Smith, R. Geßner, “The ENVISAT Michelson Interferometer for Passive Atmospheric Sounding (MIRAS),” Proceedings of IGARSS′99, Vol. 2, pp. 1435–1437, Hamburg, Germany, June 28–July 2, 1999Google Scholar
  75. 665).
    M. Endemann, H. Fischer, “Envisat’s High-Resolution Limb Sounder: MIPAS,” ESA Bulletin 76, November 1993, pp. 47–52Google Scholar
  76. 666).
    W. Posselt, “Michelson Interferometer for Passive Atmospheric Sounding,” Proceedings of the Twenty-fourth International Symposium on Remote Sensing of the Environment, May 27–31, 1991, Rio de Janeiro, Volume II, pp. 737–748, ERIM, Ann Arbor MI.Google Scholar
  77. 667).
  78. 668).
    M. Endermann, Ph. Gare, D.J. Smith, K. Hoerning, B. Fladt, R. Geissler, “MIPAS: Design Overview and Current Development Status,” Proceedings of SPIE, Vol. 2956, pp. 124–135, Sept. 24–26, 1996,Google Scholar
  79. 669).
    M. Zink, C. Buck, J. L. Suchail, R. Torres, et al., “The Radar Imaging Instrument and Its Applications: ASAR,” ESA Bulletin No 106, June 2001, pp. 46–55Google Scholar
  80. 670).
    Y. L. Desnos, C. Buck, et al., “ASAR — Envisat’s Advanced Synthetic Aperture Radar,” ESA Bulletin, No. 102, May 2000, pp. 91–100Google Scholar
  81. 671).
    J. L. Suchail, C. Buck, J. Guijarro, R. Torres, “The ENVISAT Advanced Synthetic Aperture Radar Instrument,” Proceedings of IGARSS′99, Vol. 2, pp. 1441–1443, Hamburg, Germany, June 28–July 2, 1999Google Scholar
  82. 672).
    “ASAR Advanced Synthetic Aperture Radar,” ESA brochureGoogle Scholar
  83. 673).
    S. Karnevi, E. Dean, D. J. Q. Carter, S. S. Hartley, “Envisat’s Advanced Synthetic Aperture Radar: ASAR,” ESA Bulletin, No. 76, November 1993, pp. 30–35Google Scholar
  84. 674).
    E. Attema, Y-L. Desnos, G. Duchossois, “Synthetic Aperture Radar in Europe: ERS, Envisat, and Beyond,” JHU/APL Technical Digest, Vol. 21, No. 1, 2000, pp. 155–161Google Scholar
  85. 675).
    J. Benveniste, M. Roca, G. Levrini, P. Vincent, S. Baker, O. Zanife, C. Zelli, O. Bombaci, “The Radar Altimetry Mission: RA-2, MWR, DORIS, and LRR,” ESA Bulletin, No 106, June 2001, pp. 67–76Google Scholar
  86. 676).
    C. Zelli, et al., “RA-2 Radar Altimeter: Instrument EM Model Performance Results,” IGARSS′97, Vol. 1, pp. 18–20Google Scholar
  87. 677).
    G. Angino, et al., “High Spatial Resolution Radar Altimetry for Global Earth Topography Mapping,” IGARSS′97, Vol. 1, pp. 15–17Google Scholar
  88. 678).
    A. Resti, “Envisat’s Radar Altimeter: RA-2,” ESA Bulletin, No. 76, November 1993, pp. 58–60Google Scholar
  89. 679).
    A. Resti, et al., “The Envisat Radar Altimeter System (RA-2),” ESA Bulletin No. 98, June 1999, pp. 94–101Google Scholar
  90. 680).
    H. Nett, J. Frerick, T. Paulsen, G. Levrini, “The Atmospheric Instruments and their Applications: GOMOS, MIPAS and SCIAMACHY,” ESA Bulletin, No 106, June 2001, pp. 77–87Google Scholar
  91. 681).
    T. Paulsen, A. F. Popescu, G. Ratier, G. Uguen, Ch. Lemercier, “The Global Ozone Monitoring by Occultation of Stars (GOMOS), Proceedings of IGARSS′99, Vol. 2, pp. 1438–1440, Hamburg, Germany, June 28–July 2, 1999Google Scholar
  92. 682).
    G. Ratier, G. Levrini, et al., “GOMOS: Envisat’s Contribution to Measuring Long-Term Trends in Ozone and Other Trace Gases, ESA Bulletin, Nr. 97, March 1999, pp. 20–27Google Scholar
  93. 683).
    A. Popescu, P. Ingmann, “Envisat’s Global Ozone Monitoring by Occultations of Stars Instrument: GOMOS,” ESA Bulletin, No. 76, November 1993, pp. 36–39Google Scholar
  94. 684).
    GOMOS handout from Atmospheres Panel Meeting’ in Washington DC, Feb. 26–27, 1991Google Scholar
  95. 685).
    “GOMOS — Global Ozone Monitoring by Occultation of Stars,” ESA brochureGoogle Scholar
  96. 686).
    J. L. Bertaux, E. Kyrölä, T. Wehr, “Stellar Occultation Technique for Atmospheric Ozone Monitoring: GOMOS on Envisat,” ESA Earth Observation Quarterly, No 67, Oct. 2000, pp. 17–20Google Scholar
  97. 687).
    J. Langen, “Envisat’s Contribution to Atmospheric Chemistry Studies,” Proceedings of IGARSS′99, Hamburg, Vol. III, June 28– July 2, 1999, pp. 1497–1499Google Scholar
  98. 688).
    J. Bertaux, “Vertical Profiles of Ozone from Envisat Space Platform with GOMOS Instrument,” Proceedings of IGARSS′99, Hamburg, Vol. III, June 28– July 2, 1999, pp. 1616–1618Google Scholar
  99. 689).
    J. Guijarro, A. Auriol, et al., “MWR and DORIS — Supporting Envisat’s Radar Altimetry Mission,” ESA Bulletin, No 104, Nov. 2000, pp. 41–46Google Scholar
  100. 690).
    J.-P. Huot, H. Tait, M. Rast, S. Delwart, J.-L. Bézy, G. Levrini, “The Optical Imaging Instruments and their Applications: AATSR and MERIS,” ESA Bulletin, No 106, June 2001, pp. 56–66Google Scholar
  101. 691).
    D. Lllewellyn-Jones, M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton, H. Tait, “AATSR: Global-Change and Surface Temperature Measurements from Envisat,” ESA Bulletin, 105, Feb. 2001, pp. 11–21Google Scholar
  102. 692).
    A. P. H. Goede, H, Schrijver, “SCIAMACHY: An Atmospheric Chemistry Instrument on ENVISAT,” Proceedings of IGARSS′99, Hamburg, Vol. III, June 28– July 2, 1999, pp. 1609–1611Google Scholar
  103. 693).
    G. Asrar, R. Greenstone (editors), “MTPE/EOS Reference Handbook 1995,” NASA/GSFCGoogle Scholar
  104. 694).
    “Earth Observing System,” Reference Handbook 1990, and 1991, NASA/GSFCGoogle Scholar
  105. 695).
    “Optical Remote Sensing of the Atmosphere,” 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. 23–58Google Scholar
  106. 696).
    G. Asrar, D. J. Dokken, “EOS Reference Handbook,” March 1993, NASAGoogle Scholar
  107. 697).
    The EOS/AM-1 satellite was renamed by NASA to “Terra” in Feb. 1999Google Scholar
  108. 698).
    Special issue on EOS/AM-1 Platform, Instruments and Scientific Data, IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No 4, July 1998Google Scholar
  109. 699).
  110. 700).
    ASTER, EOS Reference Handbook, 1999, pp. 102–105Google Scholar
  111. 701).
    NASA/LaRC CERES brochure, NP-1999–04–069-GSFCGoogle Scholar
  112. 702).
  113. 703).
    MODIS brochure of NASA/GSFC provided by M. D. KingGoogle Scholar
  114. 704).
    http://terra.nasa.gov/About/MODIS/about_modis.html
  115. 705).
  116. 706).
    Information provided by C. Schueler and J. Thunen of Hughes SBRC (now Raytheon SBRS)Google Scholar
  117. 707).
    MOPITT brochure of CSA/NASAGoogle Scholar
  118. 708).
  119. 709).
  120. 710).
    Note: NASA renamed the EOS/PM-1 satellite to Aqua on Oct. 18, 1999Google Scholar
  121. 711).
  122. 712).
    http://www.dss.inpe.br/programas/hsb/ingl/index.html
  123. 713).
    Information provided by Janio Kono of INPE, Sao José dos Campos, BrazilGoogle Scholar
  124. 714).
  125. 715).
    Note: The EOS/Chem-1 mission was renamed in 2000 to Aura.Google Scholar
  126. 716).
  127. 717).
  128. 718).
    P. F. Levelt, B. van den Oord, E. Hilsenrath, G. W. Leppelmeier, et al., “Science Objectives of EOS-Aura’s Ozone Monitoring Instrument (OMI),” Proceedings of the Quadrennial Ozone Symposium, Sapporo, Japan, 2000, pp. 127–128Google Scholar
  129. 719).
    E. Laan, J. de Vries, B. Kruizinga, H. Visser, et al., “Ozone Monitoring with the OMI Instrument,” Proceedings of 45th Annual Meeting of SPIE, San Diego, CA, July 30 to Aug. 4, 2000, Paper No 4132–41, pp. 334–343Google Scholar
  130. 720).
    E. Laan, J. de Vries, P. Levelt, P. Stammes, H. Saari, J. Lundell, A. Maelkki, et al., “Ozone Monitoring in the Next Millennium with the OMI Instrument,” Proc. IAF Congress, Oct. 2–6, 2000, Rio de Janeiro, IAF-99-B.2.09Google Scholar
  131. 721).
    R. Beer, T. A. Glavich, D. M. Rider, “Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite,” Applied Optics, Vol. 40, No 15, May 20, 2001, pp. 2356–2367Google Scholar
  132. 722).
    Note: As of January 1998 MTPE was renamed by NASA to “Earth Science Enterprise” (ESE)Google Scholar
  133. 723).
    M. D. King, R. Greenstone (editors), “1999 EOS Reference Handbook, NASA publicationGoogle Scholar
  134. 724).
    MTPE/EOS Reference Handbook, 1995, NASA, G. Asrar and R. Greenstone (editors)Google Scholar
  135. 725).
    Earth Observation from Space, Report of ‘Committee on Earth Studies,’ ‘Space Studies Board,’ ‘Commission on Physical Sciences, Mathematics and Applications,’ ‘National Research Council,’ National Academy Press, Washington, D. C., 1995Google Scholar
  136. 726).
    ESA Bulletin No. 65 Feb. 1991Google Scholar
  137. 727).
    W. Markwitz, “Das ERS-1 Bodensegment, Empfang, Verarbeitung und Archivierung von SAR Daten,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 111–115Google Scholar
  138. 728).
    D. Gottschalk, “ERS-1 Mission and System Overview,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 100–101Google Scholar
  139. 729).
    M.F. Buchroithner, J. Raggan, D. Strobl “Geokodierung und geometrische Qualitätskontrolle,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 116–112Google Scholar
  140. 730).
    E. P. W. Attema, “The Active Microwave Instrument On-Board the ERS-1 Satellite,” Proc. IEEE, Vol. 79, No.6, June 1991, pp. 791–799Google Scholar
  141. 731).
    ERS-1 User Handbook, ESA SP-1148, May 1992, pp. 6–7Google Scholar
  142. 732).
    G. Schreier, K. Maeda, B. Guindon, “Three Spaceborne SAR Sensors: ERS-1, JERS-1, and RADARSAT- Competition or Synergism?,” Geo Informationssysteme, Heft 2/1991, Wichmann Verlag, Karlsruhe, pp. 20–27Google Scholar
  143. 733).
    R. Winter, D. Kosmann “Anwendungen von SAR-Daten des ERS-1 zur Landnutzung,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 128–132Google Scholar
  144. 734).
    W. Kühbauch, “Anwendung der Radarfernerkundung in der Landwirtschaft,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 122–127Google Scholar
  145. 735).
    F. M. Danson, N. A. Higgins, N. M. Trodd, “Measuring Land-Surface Directional Reflectance with the Along-Track Scanning Radiometer,” PE&RS, Vol 65, No 12, Dec. 1999, pp. 1411–1417Google Scholar
  146. 736).
    Note: The on-board PRARE instrument of the ERS-1 payload could not achieve operational status after launch. The instrument worked nominally for five days after launch (five contacts with the command station showed nominal telemetry). A thorough failure analysis came to the conclusion that the most likely cause of the PRARE failure is RAM damage due to radiation (destructive RAM latch-up).Google Scholar
  147. 737).
    ‘ESA Signs Long-awaited Imagery Sales Deal,’ Space News, Feb. 10.–16, 1992, p. 4Google Scholar
  148. 738).
    C. R. Francis, G. Graf, et al., “The ERS-2 Spacecraft and its Payload,” ESA Bulletin, No. 83, Aug. 1995, pp. 13–31Google Scholar
  149. 739).
    G. Duchossois, P. Martin, “ERS-1 and ERS-2 Tandem Operations,” ESA Bulletin, No. 83, August 1995, pp. 54–60Google Scholar
  150. 740).
    “Case Study 16: SAR Interferometry,” pp. 107–115, in ‘Further Achievements of the ERS Missions,’ ESA SP-1228, Dec. 1998, ISBN: 92–9092–508–6Google Scholar
  151. 741).
    N. Stricker, A. Hahne, et al., “ATSR-2: The Evolution in its Design from ERS-1 to ERS-2,” No. 83, August 1995, pp. 32–37Google Scholar
  152. 742).
    ESA 1998: GOME Special, Earth Observation Quarterly No. 58, March 1998Google Scholar
  153. 743).
    C. Zehner, G. Pittella, “Preparing atmospheric applications for future ESA Earth-observation missions in the frame of the data user program”, ESA Earth Observation Quarterly No. 61, Feb. 1999, pp. 1–6Google Scholar
  154. 744).
    C.J. Readings, The Interim GOME Science Report,’ Feb. 1990,Google Scholar
  155. 745).
    ‘The Global Ozone Monitoring Experiment (GOME) and ERS-2,’ Earth Observation Quarterly, ESA periodical No. 32 Dec. 1990Google Scholar
  156. 746).
    A. Hahne, et al., “GOME: A New Instrument for ERS-2,” ESA Bulletin, No. 73, February 1993, pp. 22–29Google Scholar
  157. 747).
    GOME Global Ozone Monitoring Experiment, Interim Science Report, ESA SP-1151, September 1993Google Scholar
  158. 748).
    Information provided by Lihua Zhang of CAST, Beijing, ChinaGoogle Scholar
  159. 749).
    B. E. Schutz, “Spaceborne Laser Altimetry: 2001 and Beyond,” published in: H. P. Plag (ed.), 1998, Book of Extended Abstracts, Wegener-98, Norwegian Mapping Authority, Honefas, NorwayGoogle Scholar
  160. 750).
  161. 751).
  162. 752).
    “GLAS Geoscience Laser Altimeter System,” ESE Reference Handbook, 1999, NASA/GSFC, pp. 113–114Google Scholar
  163. 753).
    B. E. Schutz, “Laser Altimetry and Lidar From ICESat/GLAS,” IGARSS 2001, Sydney, Australia, July 9–13, 2001Google Scholar
  164. 754).
    Illustration provided by Michael D. King of NASA/GSFCGoogle Scholar
  165. 755).
    Note: The availability of Landsat imagery created a lot of interest in the science community. The Hyderabad ground station started receiving Landsat data on a regular basis in 1978. The Landsat program with its design and potentials was certainly a great model and yardstick for the IRS program.Google Scholar
  166. 756).
    G. Joseph, B. L. Deekshatulu, “Evolution of Remote Sensing in India,” Space in Pursuit of New Horizon, National Academy of Sciences publication, (editor: R. K. Verma and others), Allahabad, 1992, pp. 331–354Google Scholar
  167. 757).
    K. Kasturirangan, G. Joseph, et al., “IRS Mission,” Current Science, Vol. 61, No. 3 and 4, Aug. 25, 1991, pp. 136–151Google Scholar
  168. 758).
    P. S. Goel, “Spacecraft Technology Development in India,” Space Forum, Vol. 5, No 1–3, 2000, pp. 5–38Google Scholar
  169. 759).
    “Indian Remote Sensing Satellite and Associated Data Products,” A.K.S. Gopalan, Proceedings of the Twenty-Third International Symposium of Remote Sensing of the Environment, Vol. I, p. 71, ERIM, Ann Arbor, MI, 1990Google Scholar
  170. 760).
    IRS NewsLetter, ISRO, Vol. 2 No. 1, March 1991Google Scholar
  171. 761).
    G. Joseph, IRS-1A Camera — Its Evolution and Realization,” brochure of NNRMS (National Natural Resources Management System), Bangalore, IndiaGoogle Scholar
  172. 762).
    Note: At the time of project initiation, CCD arrays with maturity of production were limited to 2048 elements. Hence the swath of LISS-I was limited to about 150 km. Since LISS-II has a better resolution by a factor of two compared to the LISS-I camera, two LISS-II cameras were needed to produce a swath similar to that of LISS-I.Google Scholar
  173. 763).
    “India Expands Access to Imagery,” Space News Aug. 26 — Sept. 8, 1991, p. 22Google Scholar
  174. 764).
    “India Calls IRS-1B Launch a Success,” Space News, September 9–15, 1991, p. 12Google Scholar
  175. 765).
    IRS-1EMEOSS Utilization Plan, ISRO, July 1991Google Scholar
  176. 766).
    Note: The satellite designations P1, P2, P3, etc. stand for the launches carried out by PSLV (Polar Satellite Launch Vehicle), the launch vehicle developed by ISROGoogle Scholar
  177. 767).
    Document on Configuration of IRS-P2 and MOS and their Interfaces, ISAC, Bangalore, Nov. 1992Google Scholar
  178. 768).
    IRS-1C Executive Summary, IRS-1C/1D Project, May 1990, ISROGoogle Scholar
  179. 769).
    “India’s IRS-1C Satellite to offer sharper Images,” Space News, May 25–31, 1992 p. 11Google Scholar
  180. 770).
    “India Readies Sharper IRS-1C for Molniya Launch,” Space News, January 9–15, 1995, p. 3Google Scholar
  181. 771).
    S. Kalyanaraman, “Technologies Developed for IRS Program,” Journal of Spacecraft Technology, Vol. 9, No 1, 1999, pp. 1–13Google Scholar
  182. 772).
    K. Kasturirangan, et al., “Indian remote sensing satellite (IRS) — 1C — The beginning of a new era,” Current Science, Vol. No. 7, April 10, 1996, pp. 495–500Google Scholar
  183. 773).
    “IRS-1C Data Users Handbook,” NRSA (India) document provided by Euromap (of GAF), September 1995Google Scholar
  184. 774).
    G. Joseph, et al., “Cameras for Indian remote sensing satellite IRS-IC,” Current Science, Vol. 70, No. 7, April 10, 1996, pp. 510–515Google Scholar
  185. 775).
    K. Jacobsen, “Geometric Potential of IRS-1C PAN-Camera,” Proceedings of ISPRS Symposium on Earth Observation Systems for Sustainable Development, Feb. 25–27, 1998, pp. 131–136, ISRO, BangaloreGoogle Scholar
  186. 776).
    A. S. Kirankumar, P. N. Babu, R. Bisht, “A Study of On-Orbit Behavior of InGaAs SWIR Channel Device of IRS-1C/1D LISS-III Camera,” Proceedings of International Symposium on Earth Observation System for Sustainable Development, Feb. 25–27, 1998, Bangalore, India, pp. 303–307Google Scholar
  187. 777).
    K. Thyagarajan, A. Neumann, G. Zimmermann, “The IPS-P3 Remote Sensing Mission,” Small Satellites for Earth Observation, International Symposium of IAA, Berlin, Nov. 4–8, 1996, Walter de GruyterGoogle Scholar
  188. 778).
    G. Zimmermann, A. Neumann, “The Imaging Spectrometer Experiment MOS on IPR-P3 — Three Years of Experience,” Journal of Spacecraft Technology, Vol. 10, No 1, Jan. 2000, pp. 1–9Google Scholar
  189. 779).
    R. N. Tyagi, “IRS-P4 mission,” Current Science, Vol. 77, No 8, Oct. 25, 1999, pp. 1033–1037Google Scholar
  190. 780).
    M. Rao, V. Jayaraman, G. Joseph, “Earth Observation Programme of India — Catering to National Needs of Sustainable Development,” Proceedings of the International Symposium on Earth Observation System for Sustainable Development, Feb. 25–27, 1998, Bangalore, India, pp. 277–292Google Scholar
  191. 781).
    R. N. Tyagi, “Indian Remote Sensing Satellite (IRS)-P4 (OCEANSAT-1), NNRMS Bulletin 22, May 1998, pp. 5–12Google Scholar
  192. 782).
    ISRO brochure of IRS-P4 (OceanSat-1), provided by George JosephGoogle Scholar
  193. 783).
    SAC Courier, Vol. 24, No 2, July 1999, the issue focuses on IRS-P4 (OceanSat-1), instruments and applicationsGoogle Scholar
  194. 784).
    A. S. Ganeshan, S. A. Rathnakara, et al., “Precise Position Determination of IRS-P4 Using GPS Measurements,” Journal of Spacecraft Technology, Vol. 10, No 1, Jan. 2000, pp. 16–24Google Scholar
  195. 785).
    M. S. Kumar, A. S. Kumar, “Ocean Color Monitor (OCM) of IRS-P4,” NNRMS Bulletin-22, May 1998, pp.13–19Google Scholar
  196. 786).
    P. S. Desai, H. Honne Gowda, K. Kasturirangan, “Ocean research in India: Perspective from space,” Current Science, Vol. 78 No. 3, Feb. 2000, pp, 268–278Google Scholar
  197. 786).
    P. S. Desai, H. Honne Gowda, K. Kasturirangan, “Ocean research in India: Perspective from space,” Current Science, Vol. 78 No. 3, Feb. 2000, pp, 268–278Google Scholar
  198. 788).
    S. S. Rana, “Multifrequency Scanning Microwave Radiometer of IRS-P4,” NNRMS Bulletin-22, May 1998, pp.20–23Google Scholar
  199. 789).
    Note: ISRO is the only Space Agency anywhere that did not provide any imagery electronically of its spacecraft or of its instruments (in spite of many requests).Google Scholar
  200. 790).
    The Japanese nickname for JERS-1 is Fuyo-1, the name of a Japanese flower.Google Scholar
  201. 791).
    Y. Nemoto, et al., “Japanese Earth Resources Satellite-1 Synthetic Aperture Radar,” Proceedings of the IEEE, Vol. 79, No. 6, June 1991, pp. 800–809Google Scholar
  202. 792).
    JERS-1 Data User’s Handbook, provided by NASDA/EOCGoogle Scholar
  203. 793).
    K. Maeda, M. Nakai, O. Ryuguji, “JERS-1/ERS-1 Verification Program and Future Verification Program,” Advanced Space Research, Vol. 12, No. 7, pp. 327–331, 1992Google Scholar
  204. 794).
    SK Yoo, S. Lee, et al., “The KITSAT-2 CCD Earth Imaging Experiment,” Proceedings of SPIE Conference on Small Satellite Technology and Applications IV, Vol. 2317, Rome, September 1994Google Scholar
  205. 795).
    KITSAT-3 brochure provided by Dongseok Shin of SaTReC, Taejon, Republic of KoreaGoogle Scholar
  206. 796).
    B. J. Kim, H. Lee, S. D. Choi, “Three-Axis Reaction Wheel Attitude Control System for KITSAT-3 Microsatellite,” Pergamon, Space Technology, Vol. 16, No 5/6, pp. 291–296, 1996Google Scholar
  207. 797).
    J. Seon, K. I. Deon, S. H. Kim, et al., “Brief Reports on KAISTSAT-4 Mission Analysis,” Journal on Astronomy and Space Sciences, Vol. 17, No. 2, 2000, pp. 1–9Google Scholar
  208. 798).
    J. Seon, H. S. Kim, B. J. Kim, Y. S. Chang, K.-M. Park, et al., “Preliminary results from mission analysis on KAISTSAT-4,” SaTReC paper provided by Woo-Kyung LeeGoogle Scholar
  209. 799).
    H.-W. Lee, B. J. Kim, M.-J. Tahk, D.-J. Park, “Attitude Determination and Control of KAISTSAT-4 Satellite,” internal paper of SaTReC provided by Woo-Kyung LeeGoogle Scholar
  210. 800).
  211. 801).
    Information provided by H. Paik and G. H. Choi of KARIGoogle Scholar
  212. 802).
    Y. M. Cho, S. S. Yong, et al, “Ocean Scanning Multispectral Imager (OSMI),” Proceedings Fifth International Conference on Remote Sensing for Marine and Coastal Environments, San Diego, CA, Oct. 5–7, 1998Google Scholar
  213. 803).
    Y. M. Cho, “Ocean Scanning Multispectral Imager (OSMI), Post-launch Radiometric Responsivity Analysis,” Proceedings of IEEE/IGARSS 2000, Honolulu, HI, July 24–28, 2000Google Scholar
  214. 804).
    Note: Preference is given to a whiskbroom imager (the older imaging technology) because the optics for push-broom operation must always cover FOV (the total field of view) while the optics for whiskbroom operation deal with IFOV (instantaneous field of view) wnich is much smaller than FOV. Hence, there are less distortions at the swath edge.Google Scholar
  215. 805).
    Information provided by Young-Min Cho of KARIGoogle Scholar
  216. 806).
    Special Issue: 25th Anniversary of Landsat, PE&RS Vol. LXIII, No. 7, July 1997, pp. 829–905Google Scholar
  217. 807).
    E. J. Sheffner, “The Landsat Program: Recent History and Prospects,” PE&RS, Vol. 60, 1994, pp. 735–744Google Scholar
  218. 808).
    “Taschenbuch zur Fernerkundung,” F. Strathmann, Wichmann Verlag, 1990Google Scholar
  219. 809).
    Monitoring Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, AIAA, 1985, Chapter 3Google Scholar
  220. 810).
    A. F. Goetz, J. B. Wellman, W. L. Barnes, “Optical Remote Sensing of the Earth,” Proceedings of the IEEE, Vol. 73, No. 6, June 1985, pp. 950–969Google Scholar
  221. 811).
    S. C. Freden, F. Gordon, “Landsat Satellites,” Chapter 12 of ‘Manual of Remote Sensing,’ 2nd edition, Vol I, published by the American Society of Photogrammetry, 1983, pp. 517–570Google Scholar
  222. 812).
    A. M. Mika, “Three Decades of Landsat Instruments,” PE&RS, July 1997, pp. 839–852Google Scholar
  223. 813).
    Note: the line array of six detectors was positioned in the along-track direction, thus providing an instantaneous parallel ground coverage of 336 m in one cross-track scan with the whiskbroom configuration. This wide along-track coverage permits sufficient integration time for all cells in each scan sweep.Google Scholar
  224. 814).
    “Landsat-4 Data Users Handbook,” USGS/NOAA, 1984Google Scholar
  225. 815).
    P. N. Slater, “Remote Sensing Optics and Optical Systems,” Addison-Wesley, Reading, MA, 1980Google Scholar
  226. 816).
    “Satellite Loss Raises Questions for Eosat’s Future,” Space News, October 11–17, 1993, p. 3Google Scholar
  227. 817).
    EOSAT Landsat Technical Notes, September 1992Google Scholar
  228. 818).
    K. Dolan, P. Sabelhaus, D. Williams, “Landsat-7 Extending 25 Years of Global Coverage,” Proceedings of Information for Sustainability, 27th International Symposium on Remote Sensing of Environment, Tromsoe, Norway, June 8–12, 1998, pp. 622–625Google Scholar
  229. 819).
    B. L. Markham, et al., “Radiometric Calibration of the Landsat-7 Enhanced Thematic Mapper Plus,” Proceedings of IGARSS ′94, Volume IV, pp. 2004–2006Google Scholar
  230. 820).
    K. Thome, B. Markham, J. Barker, P. Slater, S. Biggar, “Radiometric Calibration of Landsat,” PE&RS, July 1997, pp. 853–858Google Scholar
  231. 821).
    Note: The detector line arrays (16 for VNIR bands, 32 for PAN, and 8 detectors for TIR) of the whiskbroom scanner are oriented in the along-track direction. This arrangement provides a parallel coverage of 480 m along-track in one scan sweep (cross-track direction). The wide along-track coverage permits sufficient integration time for all cells in each scan sweep.Google Scholar
  232. 822).
    J. R. Irons, D. L. Williams, B. L. Markham, “Landsat-7 ETM+ On-Orbit Calibration and Data Quality Assessment,” Proceedings IGARSS ′95, Vol. II, pp. 1573–1575Google Scholar
  233. 823).
    W. C. Draeger, T. M. Holm, D. T. Lauer, R. J. Thompson, “The Availability of Landsat Data: Past, Present and Future,” PE&RS, July 1997, pp. 869–875Google Scholar
  234. 824).
    R. A. Williamson, “The Landsat Legacy: Remote Sensing Policy and the Development of Commercial Remote Sensing,” PE&RS, July 1997, pp. 877–885Google Scholar
  235. 825).
    The satellite missions are named in honor of Meriwether Lewis (1774–1809) and William Clark (1770–1838), who headed the first overland expedition of about 40 persons (1804–06) to the Pacific coast and back, starting in St. Louis, Missouri. The expedition was initiated by President Thomas Jefferson, who wanted a first survey (information in the form of maps and diaries) of the territory west of the Mississippi acquired by the Louisiana Purchase in 1803 from France.Google Scholar
  236. 826).
    Information provided by J. S. Pearlman and S. K. Manlief of TRW, Redondo Beach, CAGoogle Scholar
  237. 827).
    P. Parry, “The SSTI Lewis Better, Faster, Cheaper Guidance < Navigation, and Control Subsystem,” Proceedings of the 10th AIAA/USU Conference on Small Satellites, Sept. 16–19, 1996, Logan, UTGoogle Scholar
  238. 828).
    Note: The NICMOS3 array is being developed for the next-generation IR instruments for the Hubble Space Telescope.Google Scholar
  239. 829).
    J. Benton, “Pyramyd Coarse Sun Sensing for NASA SSTI Clark Safe-Hold Mode,” Proceedings of the 10th AIAA/USU Conference on Small Satellites, Sept. 16–19, 1996, Logan, UTGoogle Scholar
  240. 830).
    Information provided by J. Jacobi of CTA, McLean, VA and by R. J. Hayduk of NASA/HQ, Washington, DCGoogle Scholar
  241. 831).
    A. Lawler, “Faster, Cheaper, Better is Also Harder,” Science, Vol. 29, March 6, 1998Google Scholar
  242. 832).
    P. G. Weber, B. C. Brock, A. J. Garrett, et al., “Multispectral Thermal Imager Mission Overview,” Proceedings of SPIE, Imaging Spectroscopy V, Vol 3753, Denver, CO, July 19–21, 1999, pp. 340–346Google Scholar
  243. 833).
    http://nis-www.lanl.gov/nis-projects/mti/
  244. 834).
    R. Rex Kay, S. C. Bender, T. D. Henson, D. A. Byrd, et al., “Multispectral Thermal Imager (MTI) Payload Overview,” Proceedings of SPIE, Imaging Spectroscopy V, Vol 3753, Denver, CO, July 19–21, 1999, pp. 347–358Google Scholar
  245. 835).
    T. Henson, S. Bender, W. Rappoport, et al., “Multispectral Thermal Imager Optical Optical Performance and Integration of the Flight Focal Plane Assembly,” SPIE Vol. 3753, Denver, CO, July 19–21, 1999, pp. 359–368Google Scholar
  246. 836).
    W. B. Clodius, et al., “MTI On-Orbit Calibration,” SPIE Vol. 3753, Denver, CO, July 19–21, 1999, pp. 380–391Google Scholar
  247. 837).
    F. Fárnik, H. Garcia, A. Kiplinger, “Solar Broad-band Hard X-Ray Spectrometer Onboard the MTI Satellite,” Proceedings of A Crossroads for European Solar & Heliospheric Physics Conference,’ Tenerife, March 23–27, 1998, pp. 305–308, ESA SP-417Google Scholar
  248. 838).
    H. A. Garcia, F. Fárnik, A. L. Kiplinger, “Hard x-ray spectroscopy for proton flare prediction,” Proceedings of the SPIE Conference on Missions to the Sun II, San Diego, CA, July 1998, Vol. 3442, pp. 210–216Google Scholar
  249. 839).
    http://www.asu.cas.cz/english/new/HXRS_descr.htm
  250. 840).
    T. Wilson, C. Davis, “Naval EarthMap Observer (NEMO) Satellite,” Proceedings of SPIE, Vol. 3753, Denver, CO, July 19–21, 1999, pp. 2–11Google Scholar
  251. 841).
    http://nemo.nrl.navy.mil/public/index.html
  252. 842).
    C. O. Davis, K. Carder, “Requirements Driven Design of an Imaging Spectrometer System for Characterization of the Coastal Environment,” Proceedings of SPIE, Vol. 3118, San Diego, CA, 1997Google Scholar
  253. 843).
    C. O. Davis, “The Hyperspectral Remote Sensing Technology (HRST) Program,” NRL White Paper, 1997Google Scholar
  254. 844).
    C. O. Davis, K. Carder, “Requirements Driven Design of an Imaging Spectrometer System for Characterization of the Coastal Environment,” Proceedings of SPIE, Vol. 3118, San Diego, CA, 1997Google Scholar
  255. 845).
    M. Corson, “Calibration of the NEMO sensor imaging payload,” SPIE Proceedings, Vol. 3437, 1998Google Scholar
  256. 846).
    A. Myers, “NEMO satellite sensor imaging payload,” SPIE Proceedings, Vol. 3437, 1998Google Scholar
  257. 847).
    J. Bowles, et al., “Hyperspectral Data Compression and Science Algorithms for the NEMO Satellite,” Proceedings of 1st EARSeL Workshop on Imaging Spectroscopy, University of Zürich, Switzerland, Oct. 6–8.1998, pp. 183–190Google Scholar
  258. 848).
    Verbal information provided by B. Kutuza of IRE (Russian Academy of Sciences), MoscowGoogle Scholar
  259. 849).
    OKEAN-O Earth Observation Spacecraft, a brochure of RKA and NKAU provided by B. Kutuza of IRE, MoscowGoogle Scholar
  260. 850).
    http://www.okean-o.dp.ua/en_satellite.html
  261. 851).
    Information provided by B. Kutuza of IRE, Moscow, and translated by B. Zhukov of DLR, OberpfaffenhofenGoogle Scholar
  262. 852).
    I. V. Bragin, V. P. Sgibnew, K. A. Pobedonostsev, A. V. Evtushenko, et. al., “Space-Based Remote Sensing Complexes,” Proceedings of the 29th European Microwave Conference, Munich, Sept. 1999, pp. 388–390Google Scholar
  263. 853).
    Information provided by V. I. Pustovoit, V. E. Pozhar, and V. N. Zhogun of STCUI-RASGoogle Scholar
  264. 854).
    V. I. Pustovoit, V. E. Pozhar, “Acousto-optical spectrometers for Earth remote sensing,” Proceedings of SPIE 44th Annual Meeting, International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, July 18–23, 1999Google Scholar
  265. 855).
    “PRIRODA,” Ein Forschungsmodul der sowjetischen Orbitalstation MIR zur Fernerkundung der Erde, Wissenschaftliche Nutzlast Technische Beschreibung, Institut für Kosmosforschung (IKF), Berlin, 1990Google Scholar
  266. 856).
    “PRIRODA-Experimente,” Programm zur Beschaffung, Verarbeitung, Bewertung und Anwendung von Daten des Multisensorsystems PRIRODA der sowjetischen Orbitalstation MIR, 1992–94, DARA, Berlin, Mai 1991Google Scholar
  267. 857).
    “Complex for Remote Sensing of the Earth,” Science Program, DLR paper 1991Google Scholar
  268. 858).
    Orbital Station MIR, Complex of Remote Sensing of the Earth “PRIRODA,” Scientific Program, IRE brochure, Moscow, 1991Google Scholar
  269. 859).
    G. Zimmermann, “Mission PRIRODA,” German Proposals to Scientific Program, DARA Bulletin, Dec. 1991Google Scholar
  270. 860).
    I. V. Bragin, V. P. Sgibnew, et al., “Space-Based Remote Sensing Complexes,” Proceedings of the 29th European Microwave Conference, Munich, Germany, Oct. 5–7, 1999, Vol. 2, pp. 388–390Google Scholar
  271. 861).
    A. Neumann, “Spaceborne Imaging Spectrometers for Ocean Color Remote Sensing, MOS-Priroda and MOSIRS,” DLR/ISST paper presented at the IOC Ocean Color Workshop, Victoria, BC, September 21–22, 1995Google Scholar
  272. 862).
    M. L. Chanin, M. Desbois, A. Hauchecorne, “ALISSA a French Russian cooperation in the PRIRODA mission.” Paper of CNRS — Service d’AeronomieGoogle Scholar
  273. 863).
    R. Furrer, H. Rubin, M. Schaale, A. V. Poberovsky, A. V. Mironenkov, Y. M. Timofeyev, “MIRIAM — A Space-borne Sun Occultation Experiment for Atmospheric Trace Gas Spectroscopy,” GeoJournal 32.1, January 1994, pp. 17–27Google Scholar
  274. 864).
    “MIRIAM 1995–1998 MIR-Infrared Atmospheric Measurements — Untersuchung der Atmosphäre aus der Raumstation MIR,” Institut für Weltraumwissenschaften an der Freien Universität Berlin, 1994Google Scholar
  275. 865).
    German User Requirements to PRIRODA Mission, Annex 1 of Protocol to MOMS-2 for the PRIRODA Mission, DLR paper of PRIRODA Workshop, May 1991Google Scholar
  276. 866).
    Protocol of the Meeting of Specialists of USSR and Germany on MOMS-2 for the PRIRODA Mission. DLR paper, May 1991Google Scholar
  277. 867).
    D. Meißner, et al, “The MOMS-2P Instrument and its Mission on Priroda/MIR Station,” IAF-96-B.4.03, 47th International Astronautical Congress, Oct. 7–11, 1996, Beijing, ChinaGoogle Scholar
  278. 868).
    DASA Endbericht, “MOMS-02P auf Priroda/MIR,” Doc. No. M2P-DAS-100-RP-001.0, Dec. 12, 1996Google Scholar
  279. 869).
    S. Föckersperger, et al., “MOMSNAV: Location of the Russian Space Station MIR with Differential GPS,” Proceedings of the 2nd ESA International Conference on GNC, ESTEC, 12–15 April 1994, pp. 159–165Google Scholar
  280. 870).
    IKAR-D, -P and MSU-SK with forward look angle (in flight direction) of 40° against nadirGoogle Scholar
  281. 871).
    R. K. Raney, A.P. Luscombe, E.J. Langham, S. Ahmed “RADARSAT,” reprint from Proceedings of the IEEE, Vol. 79, No. 6, June 1991Google Scholar
  282. 872).
    RADARSAT Annual Review 1997/98, CSA brochure, p. 19Google Scholar
  283. 873).
    * Nominal: range dependent and processor dependent; ** Nominal: ground range resolution varies with rangeGoogle Scholar
  284. 874).
  285. 875).
    http://www.space.gc.ca/csa_sectors/earth_environment/radarsat/default.asp
  286. 876).
    P. Fox, “The RADARSAT-II Mission,” Proceedings of IGARSS′99, Hamburg, Vol. III, June 28–July 2, 1999, pp. 1500–1502Google Scholar
  287. 877).
    L. M. Ward, P. Axelrad, “A Combined Filter for GPS-Based Attitude and Baseline Estimation,” Navigation: Journal of The Institute of Navigation, Vol. 44, No. 2, Summer 1997, pp. 195–213Google Scholar
  288. 878).
    L. M. Ward, P. Axelrad, “Spacecraft attitude estimation using GPS: Methodology and results for RADCAL, .” Navigating the 90s: Technology, Applications, and Policy, Proceedings of The Institute of Navigation, National Technical Meeting, Anaheim, Calif., 18–20 January, The Institute of Navigation, Alexandria, Va., pp. 813–825.Google Scholar
  289. 879).
    ‘Sowjetisches kosmisches System zum Studium der Naturschätze der Erde und zur Umweltkontrolle — der heutige Stand und die Perspektiven für den Zeitraum 1991–1995,’ the paper is a translation of a presentation given by L. Dessinow of the USSR Academy of Sciences in 1989.Google Scholar
  290. 880).
    Interavia Space Directory 1990–91, p. 436Google Scholar
  291. 881).
    E. L. Lukashevich, “The Space System Resurs-F for the Photographic Survey of the Earth,” Space Bulletin, Vol. 1, No. 4, 1994, pp. 2–4Google Scholar
  292. 882).
    Information provided by the State Center “PRIRODA,” MoscowGoogle Scholar
  293. 883).
    Courtesy of E. L. Lukashevich of State Center Priroda, MoscowGoogle Scholar
  294. 884).
    Note: For S/C No. 37 and (39), the orbit was changed from an altitude of 275 km (275 km) to an altitude of 355 km (180 km), respectivelyGoogle Scholar
  295. 885).
    T.M. Wasjuchina, A.M. Wolkow, “Zustand und Perspektiven der Entwicklung Kosmischer Systeme zur Erforschung natürlicher Ressourcen der Erde und der Hydrometeorologie,” Moscow 1988, translated into German by R. Müller, 1989 (IKF)Google Scholar
  296. 886).
    COSPAR-90-Paper by A. Karpov, USSR State Committee for Hydrometeorology, Moscow. Title of paper: “Hydrometeorological, Oceanographic and Earth-Resources Satellite Systems operated by the USSR.”Google Scholar
  297. 887).
    Information provided by B. Kutuza of IRE, Moscow, and translated by B. Zhukov of DLR, OberpfaffenhofenGoogle Scholar
  298. 888).
    R. Sparvoli, et al., “Launch in orbit of the telescope NINA for cosmic ray observations: preliminary results,” Proceedings of The Sixth Topical Seminar on ‘Neutrino and Astro -Particle Physics,’ Centro Studi ‘I Cappuccini’ in San Miniato al Todesco, Italy, May 17–21, 1999Google Scholar
  299. 889).
    http://www.nspo.gov.tw/e40/welcome.htm
  300. 890).
    http://www.nspo.gov.tw/e-html.v30/welcome.html
  301. 891).
    W. Ferster, “ROCSat Set to Launch Taiwan’s Space Program,” Space News, Feb. 1, 1999, p. 7Google Scholar
  302. 892).
  303. 893).
    H. C. Wang, L. C. Lee, J. Ling, A. M. Wu, “ROCSat-2 Remote Sensing Mission,” Proceedings of the 51st IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000, IAF-00-B.1.09Google Scholar
  304. 894).
    J. S. Chern, A. M. Wu, J. Ling, “Some Aspects of ROCSat-2 System Engineering,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 57–60Google Scholar
  305. 895).
    C. Alonso, “SAC-C Mission,” presented at the Euro-Latin-American Space Days in Mexico DC in November 1997Google Scholar
  306. 896).
    R. Colomb, C. Alonso, I. Nollmann, “SAC-C Mission and the International AM Constellation for Earth Observation,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 433–437Google Scholar
  307. 897).
    CONAE-NASA Workshop, Volume I and II, Dec. 1–2, 1993 — paper provided by J. L. LaBreque of NASA-HQGoogle Scholar
  308. 898).
    Information provided by Andrea Bacchetta of Alenia Spazio, Torino, ItalyGoogle Scholar
  309. 899).
    Information provided by Robert Ecoffet of CNESGoogle Scholar
  310. 900).
    Lee-Lueng Fu, B. Holt, “Seasat Views Oceans and Sea Ice With Synthetic Aperture Radar,” JPL publication 81–120, February 15, 1982Google Scholar
  311. 901).
    Ch. Elachi, “Spaceborne Imaging Radar: Geologic and Oceanographic Applications,” Science, Vol. 209, No. 4461,, September 5, 1980, pp. 1073–1082Google Scholar
  312. 902).
    R. L. Jordan, “The Seasat-A synthetic-aperture radar systems,” IEEE Journal of Oceanic Eng., Vol. OE-5, pp. 154–164, 1980.Google Scholar
  313. 903).
    E. Njoku, et al., “The Seasat Scanning Multichannel Microwave Radiometer (SMMR): instrument description and performance,” IEEE Journal of Oceanic Eng., Vol. OE-5, pp. 100–115, 1980Google Scholar
  314. 904).
    P. N. Swanson, A. L. Riley, “The SeaSAT Scanning Multichannel Microwave Radiometer (SMMR): Radiometric calibration algorithm development and performance,” IEEE Journal of Ocean Engineering, Vol 5 No.2, 1980, pp. 116–124Google Scholar
  315. 905).
    W. Townsend, “An initial assessment of the performance achieved by the Seasat-1 radar altimeter,” IEEE Journal of Oceanic. Eng., Vol. OE-5, pp. 80–92, 1980Google Scholar
  316. 906).
    J. W. Johnson, et al., “Seasat-A satellite scatterometer instrument evaluation,” IEEE Journal of Oceanic Eng., Vol. OE-5, pp. 138–144, 1980Google Scholar
  317. 907).
    P. McClain, R. Marks, G. Cunningham, A. McCulloch, “Visible and Infrared Radiometer on Seasat-1,” IEEE Journal on Oceanic Engineering, Vol. OE-5, No. 2, April 1980, pp 164–168Google Scholar
  318. 908).
    P. Silvestrin, M. Berger, Y. H. Kerr, J. Font, “ESA’s Second Earth Explorer Opportunity Mission: The soil Moisture and Ocean salinity Mission — SMOS.” IEEE Geoscience and Remote Sensing Newsletter (118), 2001, pp.11–14Google Scholar
  319. 909).
    J. Blouvac, B. Lazaed, J. M. Martinuzzi, “ CNES Small Satellites Earth Observation Scientific Future Missions, IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 11–14Google Scholar
  320. 910).
    M. Martin-Neira, J. Font, M. Srokosz, I. Corbella, A. Camps, “Ocean Salinity Observations with SMOS Mission,” Proceedings of the IEEE IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000Google Scholar
  321. 911).
    Y. H. Kerr, J. Font, P. Waldteufel, M. Berger, “The Soil Moisture and Ocean Salinity Mission -SMOS,” ESA Earth Observation Quarterly, No 66, July 2000, pp. 18–26Google Scholar
  322. 912).
    Y. H. Kerr, P. Waldteufel, J. P. Wigneron, J. Font, “Description of the Soil Moisture and Ocean Salinity Mission,” COST 712 -WG 3 report, 2001, European Union, BrusselsGoogle Scholar
  323. 913).
  324. 914).
    J. Font, Y. Kerr, M. Berger, “Measuring Ocean Salinity from Space: the European Space Agency’s SMOS Mission,” Backscatter (Alliance for Marine Remote Sensing Association), Vol. 11, No 3, 2000, pp. 17–19Google Scholar
  325. 915).
    Y. H. Kerr, P. Waldteufel, J.-P. Wigneron, J. Font, “The Soil Moisture and Ocean Salinity Mission: The Science Objectives of an L-band 2-D Interferometer,” Proceedings of the IEEE IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000Google Scholar
  326. 916).
    Y. Kerr, J. Font, et al., “Next Generation Radiometers: SMOS — A Dual Pol L-band 2-D Apertures Synthesis Radiometers,” 2000 IEEE Aerospace Conference, March 2000, Montana, USAGoogle Scholar
  327. 917).
    J. P. Wigneron, A. Chanzy, P. Waldteufel, J. C. Calvet, O. Marloie, J. P. Hanocq, Y. H. Kerr, “Retrieval capabilities of L-Band 2-D interferometric radiometry over land surfaces (SMOS Mission), VSP, Netherlands, 2000Google Scholar
  328. 918).
    J. P. Wigneron, P. Waldteufel, A. Chanzy, J. C. Calvet, Y. H. Kerr, “Two-D microwave interferometer retrieval capabilities of over land surfaces (SMOS Mission),” Remote Sensing Environment, Vol. 73, No 3, 2000, pp. 270–282Google Scholar
  329. 919).
    Note: SSS is defined in practical salinity units (1 PSU = 0.1%) and ranges from 32 to 37 PSUGoogle Scholar
  330. 920).
    P. Waldteufel, E. Anterrieu, J. M. Goutoule, Y. H. Kerr, “Field of view characteristics of a 2-D interferometric antenna, as illustrated by the MIRAS/SMOS L-band concept, VSP, 2000Google Scholar
  331. 921).
    Y. H. Kerr, J. Font, P. Waldteufel, A. Camps, J. Barâ, et al., “Next Generation Radiometers: SMOS A dual pol L-band 2-D Aperture Synthesis Radiometer,” IEEE Aerospace Conference, Big Sky, Montana, March 18–25, 2000Google Scholar
  332. 922).
    I. Corbella, F. Torres, et al., L-band Aperture Synthesis Radiometry: Hardware Requirements and System Performance,” Proceeding of the IEEE IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000Google Scholar
  333. 923).
    CNES viewgraphs of 1991Google Scholar
  334. 924).
    Jane’s Spaceflight Directory 1988–89, Fourth Edition, pp. 22–23Google Scholar
  335. 925).
    Note: SPOT-1 was retired from normal operations in Sept. 1990. Both of its recorders are defect. SPOT Image wants to reactivated SPOT-1 to meet increased demand for satellite imagery. See Space News Dec. 4, 1991, p. 4Google Scholar
  336. 926).
    Note: The board of inquiry investigating the failure of SPOT-3 reported that the successive failure of three of the spacecraft’s six gyroscopes caused the satellite to lose attitude control, ran out of power and then shut down within a period of hours.Google Scholar
  337. 927).
    R. M. Bevilacqua, et al., “Polar Stratospheric Studies with the Polar Ozone and Aerosol Measurement Experiment (POAM-II),” Proceedings of the American Meteorological Society, Eighth Conference on Atmospheric Radiation, January 23–28, 1994, Nashville, TNGoogle Scholar
  338. 928).
    F. Achard, J. P. Malingreau, T. Phulpin, G. Saint, B. Saugier, B. Segun, D. Vidal-Madjar, “The Vegetation Instrument on Board SPOT-4 — A Mission for Global Monitoring of the Continental Biosphere, “ LERTS brochure, Toulouse, 1990Google Scholar
  339. 929).
  340. 930).
    Information provided by T. Genet of CNES, ToulouseGoogle Scholar
  341. 931).
  342. 932).
    http://www.cnes.fr/WEB_UK/activites/programmes/Vegetation/VEGETATION.html
  343. 933).
    R. H. Frazer, Z. Li, R. Landry, “SPOT VEGETATION for characterizing boreal forest fires,” International Journal of Remote Sensing, Vol. 21, No 18, 2000, pp. 3525–3532Google Scholar
  344. 934).
    T. Tolker-Nielsen, J. C. Guillen, “SILEX: The First European Optical Communication Terminal in Orbit,” ESA Bulletin 96, Nov. 1998, pp. 42–44Google Scholar
  345. 935).
    A. F. Popescu, B. Furch, “Status of the European developments for laser intersatellite communications,” SPIE, Vol. 1866, 1993, pp. 10–20Google Scholar
  346. 936).
    R. L. Lucke, D. R. Korwan, et al., “The Polar Ozone and Aerosol Measurement (POAM-III) instrument and early validation results,” Journal of Geophysical Research, Vol. 104, D15, Aug. 20, 1999, pp. 18, 785–18, 799Google Scholar
  347. 937).
    A. Ammar, A. Baudoin, D. Assemat, M. Arnaud, “The SPOT Programme, An Operational Earth Observation System,” Proceedings 45th Congress of the International Astronautical Federation, October 9–14, 1994, IsraelGoogle Scholar
  348. 938).
    A. Baudoin, “The Current and Future SPOT Program,” Proceedings of the ISPRS Joint Workshop ‘Sensors and Mapping from Space 1999,’ Sept. 27–30, 1999, Hannover, GermanyGoogle Scholar
  349. 939).
    SPOT 5 brochure, “Supermode,” of CNES and SPOT Image, May 1999Google Scholar
  350. 940).
    P. Lier, G. Moury, C. Latry, F. Cabot, “Selection of the SPOT-5 Image Compression Algorithm,” Proceedings of SPIE, Vol. 3439, 70, 1998Google Scholar
  351. 941).
    H. Carvalho, J. Kono, M. M. Quintino, C. E. Santana, “The Amazon Rainforest Monitoring Satellite — SSR,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 19–21Google Scholar
  352. 942).
    C. H. Santana, C. E. Kono, M. M. Quintino, “SSR Amazon Rainforest Observation System,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 49–52Google Scholar
  353. 943).
    “The first Brazilian Earth Observation Satellite (SSR),” paper by C. E. Santana and J. Kono of INPEGoogle Scholar
  354. 944).
    “Satellite Launch to Advance Brazilian Space Program,” Space News Aug. 31-Sept. 6, 1992, p. 43Google Scholar
  355. 945).
    R. Dubayah, B. Blair, J. Bufton, D. Clarke, et al., “The Vegetation Canopy Lidar Mission,” presented at ASPRS, Washington, D.C., 1997Google Scholar
  356. 946).
  357. 947).
    Information provided by Nick Chrissotimos of NASA/GSFCGoogle Scholar
  358. 948).
    Information provided by E. Milton and M. Fouquet of SSTLGoogle Scholar
  359. 949).
    URL address — http://www.ee.surrey.ac.uk/CSER/UOSAT
  360. 950).
    J. W. Ward, “Microsatellites for global electronic mail networks,” Electronics and Communications Engineering Journal, December 1991, Vol. 3, No. 6, pp. 267–272Google Scholar
  361. 951).
    J. W. Ward, H. E. Price, “The UoSAT-2 Digital Communications Experiment,” Journal of the Institute of Electronic and Radio Engineers, 1986Google Scholar
  362. 952).
    UoSAT internet home pageGoogle Scholar
  363. 953).
    J. W Ward, Ada S. C, “An Evolutionary Approach to Small Satellite Technology Development.” Proceedings of the 9th AIAA/USU Conference on Small Satellites, Sept. 18–21, 1995, Logan, UTGoogle Scholar
  364. 954).
    UoSAT-1: Special issue of The IERE Journal, Vol. 52, No. 8/9, August 1982Google Scholar
  365. 955).
    J. M. Radbone, “The UoSAT-2 Spacecraft CCD Imaging and Digital Store/Read-out Experiments,” The IERE Journal, Vol. 57, No. 5, September 1987, ISSN 0267–1689Google Scholar
  366. 956).
    M. N. Sweeting, “UoSAT microsatellite missions,” Electronics & Communication Engineering Journal, IEE, June 1992Google Scholar
  367. 957).
    M. N. Allery, J. J. Sellers, M. N. Sweeting, “Results of University of Surrey on-orbit microsatellite experiments,” Proceedings of the International Symposium on Small Satellite Systems and Services, Biarritz, France, June 27–30, 1994Google Scholar
  368. 958).
    M. Fouquet, “The UoSAT-5 Earth Imaging System — in-orbit results,” 2nd Conference on Small Satellite Technologies and Applications, SPIE Symposium on Aerospace Sensing, Orlando, FL, April 20–22, 1992Google Scholar
  369. 959).
    I. Lee, D. K. Sung, S. D. Choi, “Experimental Multimission Microsatellites — KITSAT Series,” Proceedings of the 7th AIAA/USU Conference on Small Satellites, Set. 13–16, 1993Google Scholar
  370. 960).
    Information provided by J. Radbone of SSTL, University of Surrey, UKGoogle Scholar
  371. 961).
    “First PoSAT images,” Space, Vol. 9, No. 9, December 1993, p. 6Google Scholar
  372. 962).
    M. Fouquet, A. Brewer, “The Role of Microsatellites for Earth Observation, Eight years of orbital experience at the University of Surrey,” in Small Satellites for Remote Sensing, Proceedings of Space Congress, Bremen, Germany, May 24–25, 1995, pp. 133–144Google Scholar
  373. 963).
    “Space Debris Damages French Defense Satellite,” Space News, August 26 — September 1, 1996, p. 4 and p. 19Google Scholar
  374. 964).
    J. Ward, M. Sweeting, “First In-Orbit Results from the UoSAT-12 Minisatellite,” Proceedings of 13th Annual AIAA/USU Conferences on Small Satellites, Logan, Utah, Aug. 23–26, 1999, SSC-99-I-2Google Scholar
  375. 965).
    W. Sun, M. N. Sweeting, “In-Orbit Results from UoSAT-12 Earth Observation Minisatellite Mission,” Proceedings of the 3rd International Symposium of IAA, Berlin, April, 2–6, 2001, pp. 79–82Google Scholar
  376. 966).
    M. Fouquet, M. Sweeting, “UoSAT-12 Minisatellite for High Performance Earth Observation at Low Cost,” Acta Astronautica, Vol. 41, No. 3, pp. 173–182, 1997Google Scholar
  377. 967).
    A. Wicks, A. da Silva-Curiel, J. Ward, M. Fouquet, “ Advancing Small Satellite Earth Observation: Operational Spacecraft, Planned Missions and Future Concepts,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-I-8Google Scholar
  378. 968).
    S. Purivigraipong, M. J. Unwin, Y. Hashida, “Demonstrating GPS Attitude Determination from UoSat-12 Flight Data,” ION-2000, Salt Lake City, UT, Sept. 19–22, 2000, pp. 2625–2633Google Scholar
  379. 969).
    Tai Wei Chua, et al., “Merlion L&S-band System,” Proceedings of 13th Annual AIAA/USU Conferences on Small Satellites, Logan, Utah, Aug. 23–26, 1999, SSC-99-I-1Google Scholar
  380. 970).
    http://www.ee.surrey.ac.uk/CSER/UOSAT/missions/tmsat/info/index.html
  381. 971).
    Data sheets provided by Craig Underwood of SSTLGoogle Scholar
  382. 972).
    J. Singer, “US Eyes British Demonstration Satellite,” Space News, Oct. 23, 2000, pp. 3 and 19Google Scholar
  383. 973).
    A. Cropp, “The SNAP-1 NanoSat Project at Surrey — A New Generation of Satellites,” Proceedings of the 49th IAF Congress, Melbourne, Australia, Sept. 1998Google Scholar
  384. 974).
    Z. A. Wahl, K. L. Walker, J. Ward, “Modular and Reusable Miniature Subsystems for Small Satellites: An Example Describing Surrey’s Nanosatellite S-Band Downlink,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-IX-4Google Scholar
  385. 975).
    H. Steyn, et al., “An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite,” Proceedings of the 14th AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-VIII-8Google Scholar
  386. 976).
    R. Lancaster, C. Underwood, “The SNAP-1 Machine Vision System,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-II-6Google Scholar
  387. 977).
    http://www.ee.surrey.ac.uk/EE/CSER/UOSAT/missions/SNAP/nanosat/index.htm
  388. 978).
    http://www.sstl.co.uk/services/subpage_services.html
  389. 979).
    D. Gibbon, J. Ward, N. Kay, “The Design, Development and Testing of a Propulsion System for the SNAP-1 Nano-satellite,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000Google Scholar
  390. 980).
    Information provided by Craig Underwood of SSTL, Surrey, UKGoogle Scholar
  391. 981).
    M. J. Unwin, P. L. Palmer, Y. Hashida, C. I. Underwood, “The SNAP-1 and Tsinghua-1 GPS Formation Flying Experiment,” ION GPS 2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 1608–1611Google Scholar
  392. 982).
    You Zheng, Gong Ke, M. Sweeting, “Tsinghua Micro/Nanosatellite research and its application,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-IX-3Google Scholar
  393. 983).
    http://www.ee.surrey.ac.uk/CSER/UOSAT/press/cjv.htm
  394. 984).
    Y. Zheng. M. Sweeting, “Initial Mission Status Analysis of 3-axis stable Tsinghua-1 Microsatellite,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000Google Scholar
  395. 985).
  396. 986).
    TiungSat-1 data sheet of SSTL provided by Craig UnderwoodGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Herbert J. Kramer
    • 1
  1. 1.GilchingGermany

Personalised recommendations