Advertisement

Technology Missions

  • Herbert J. Kramer
Chapter

Abstract

ARGOS (also referred to as P91–1) is a large DoD research and development satellite mission, managed by the Tri-Service Space Division at Kirtland AFB (SMC/TE), Albuquerque, NM. It is part of the DoD Space Test Program (STP) with the objective to demonstrate several new space technologies and to fly payloads for global Earth sensing and celestial observations.1614) 1615) 1616)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1614).
    http://www.laafb.af.mil/SMC/PA/Fact_Sheets/Argos.htm
  2. 1615).
    http://www.te.plk.af.mil/stp/argos/argos.html
  3. 1616).
    http://www.pxi.com/brochures/argos/index.html
  4. 1617).
    Special issue of IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No 7, July 1996, pp. 1193–1392Google Scholar
  5. 1618).
    R. A. McKnight, M. F. Bahrain, et al., “On-Orbit Status of the High Temperature Superconductivity Space Experiment (HTSSE-II)”, AIAA-99–4486, 1999Google Scholar
  6. 1619).
    http://ssdd.nrl.navy.mil/www/htsse/htsse.htmlx
  7. 1620).
    K. S. Wood, et al., “The USA Experiment on the ARGOS Satellite: A Low Cost Instrument for timing X-ray Binaries,” SPIE Proceedings, Vol. 2280, 1994 p. 19CrossRefGoogle Scholar
  8. 1621).
    J. H. Beall, T. Crandall P. S. Ray, “Innovative Satellite Navigation Exercises Utilizing the USA Experiment and the ARGOS Satellite,” http://www.pxi.com/brochures/argos/ARGOS_exp.pdf
  9. 1622).
    http://ltpwww.gsfc.nasa.gov/ISSSR-95/hyperspe.htm entitled: “Hyperspectral Imaging of the Global Ionosphere from the ARGOS Satellite,”
  10. 1623).
    G. R. Carruthers, T. D. Seeley, “Global Imaging Monitor of the Ionosphere (GIMI): a Far Ultraviolet Imaging Experiment on ARGOS,” SPIE Proceedings, Vol. 2831, 1996, p. 65CrossRefGoogle Scholar
  11. 1624).
    http://spacescience.nrl.navy.mil/Branches/gimiwebpage.htm
  12. 1625).
    A. Dickinson, G. Oppenhäuser, et al, “The Artemis Program,” ESA Bulletin, No. 91, August 1997, pp. 32–39Google Scholar
  13. 1626).
    A. Wilson, “ARTEMIS,” ESA publication BR-142 with the title: More than Thirty Years of Pioneering Space Activities, 1999, pp. 156–161Google Scholar
  14. 1627).
    A. Dickinson, S. Greco, I. La Rosa, M. Protto, “The ARTEMIS Program: Near Term Advanced Communications Technology,” Proceedings of 47th AIAA Congress, Beijing, China, Oct. 7–11, 1996Google Scholar
  15. 1628).
    Note: In very elaborate communication systems with intermediate geostationary transmission satellites, the term ‘uplink’ is usually replaced by ‘forward link’ to avoid confusion. Similarly, the term ‘downlink’ is usually replaced by ‘return link.’Google Scholar
  16. 1629).
    Information provided by R. Killinger of DASA (now Astrium GmbH)Google Scholar
  17. 1630).
    D. G. Fearn, “Low Cost Missions Using Ion Propulsion,” Proceeding of the British Interplanetary Society Symposium on ‘The search for life on Mars,’, London, Nov. 11, 1998Google Scholar
  18. 1631).
    Information provided by C. Edwards of DERAGoogle Scholar
  19. 1632).
    H. L. Gray, “Development of Ion Propulsion Systems,” GEC Review, Vol. 12, No 3, 1997, pp. 154–168Google Scholar
  20. 1633).
    S. Badessi, C. F. Garriga, J. Ventura-Traveset, J. M. Pieplu, “The European ARTEMIS Satellite Navigation Payload: Enhancing EGNOS AOC Performance,” ION GPS 1998, Nashville, TN (USA), Sept. 15–18, 1998.Google Scholar
  21. 1634).
    The ECAC coverage area is from 30° W to 45° E and from 25° N to 75° NGoogle Scholar
  22. 1635).
    S. A. McDermott, D. J. Goldstein, “The Bitsy™ Spacecraft Kernel: Reducing Nanosatellite Mission Cost in the MSFC Future-X Program Through Miniaturized technologies,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-IX-8Google Scholar
  23. 1636).
    http://nssdc.gsfc.nasa.gov/nmc/sc-query.html
  24. 1637).
    M. D. Rayman, Ph. Varghese, D. H. Lehman, L. L. Livesay, “Results from the Deep Space 1 Technology Validation Mission,” 50th International Astronautical Congress, Amsterdam, The Netherlands, Oct. 4–8, 1999, IAA-99-IAA.11.2.01, the paper is also published in Acta Astronautica, Vol. 47, No 2–9, pp. 475–487, Sept. 2000Google Scholar
  25. 1638).
  26. 1639).
    R. M. Nelson, “Deep Space One: Preparing for Space Exploration in the 21st Century,” EOS, Vol. 79, No. 41, Oct. 13, 1998, pp. 493–496CrossRefGoogle Scholar
  27. 1640).
    D. Normile, “NASA Craft to Take the Controls in Flight,” Science, Vol. 282, Oct. 23, 1998, pp. 604–605CrossRefGoogle Scholar
  28. 1641).
    J. Oberst, B. Brinkmann, B. Giese, “Geometric Calibration of the MICAS CCD Sensor on the DS1 Spacecraft: Laboratory versus In-flight Data Analysis,” Proceedings of ISPRS, Amsterdam, The Netherlands, July 16–23, 2000, Vol. XXXIII B1, pp. 221–230Google Scholar
  29. 1642).
    It turned out that remote agent did have a problem (which, of course, is the reason for testing it!) that prevented it from continuing for the entire three days. The experiment was successful in that the bug was found. However, the bug did not present a risk to the spacecraft, so another experiment was designed and allowed the remote agent to complete all of its test objectives.Google Scholar
  30. 1643).
    Note: The asteroid, discovered in 1992, was only recently (1999) named in honor of Louis Braille (1809–1852), the Frenchman, who invented the alphabet for the blind.Google Scholar
  31. 1644).
    S. G. Ungar, “Technologies for Future Landsat Missions,” PE&RS, Vol. LXII, No. 7, July 1997, pp. 901–905MathSciNetGoogle Scholar
  32. 1645).
    http://eol.gsfc.nasa.gov/Technology/Documents/InstrumentOverview.html
  33. 1646).
    http://eol.gsfc.nasa.gov/Technology/ALImultispectral.htm
  34. 1647).
    Information provided by Andrew Hoskins of General DynamicsGoogle Scholar
  35. 1648).
    W. L. Smith, et al., “Geostationary Fourier Transform Spectrometer (GIFTS)-The New Millennium Earth Observing-3 Mission,” IRS ’00: Current Problems in Atmospheric Radiation, edited by W. L. Smith and Y. U. Timofeev, A. Deepak Publishing, Hampton Virginia, 2001.Google Scholar
  36. 1649).
    http://nmp.jpl.nasa.gov/eo3/index.html
  37. 1650).
    http://oea.larc.nasa.gov/PAIS/GIFTS.html
  38. 1651).
    http://its.ssec.wisc.edu/-bormin/GIFTS/
  39. 1652).
  40. 1653).
    I. Kawano, M. Mokuno et. al., “Result of Autonomous Rendezvous Docking Experiment of Engineering Test Satellite VII,” Journal of Spacecraft and Rockets, Vol.38, No.1, Jan.-Feb, 2001. p.105CrossRefGoogle Scholar
  41. 1654).
    I. Kawano, M. Mokuno, T. Miyano, T. Suzuki, “Analysis and Evaluation of GPS Relative Navigation Using Carrier Phase for RVD Experiment Satellite of ETS-VII,” ION GPS-2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 1655–1660Google Scholar
  42. 1655).
    M. Mokuno et. al., “Experimental Result of Autonomous Rendezvous Docking on Japanese ETS-VII satellite,” Proceedings of the Annual AAS Guidance and Control Conference, AAS99–022Google Scholar
  43. 1656).
    G. Visentin, F. Didot, “Testing Space Robotics on the Japanese ETS-VII Satellite,” ESA Bulletin No. 99, Sept. 1999, pp. 61–65Google Scholar
  44. 1657).
    M. Homma, S. Yoshimoto, N. Natori, Y. Tsutsumi, “Engineering Test Satellite-8 for Mobile Communications and Navigation Experiment,” 51st IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000, IAF-00-M.3.01Google Scholar
  45. 1658).
    A. Meguro, A. Tsujihata, N. Hamamoto, M. Homma, “Technology status of the 13 m aperture deployment antenna reflectors for Engineering Test Satellite VIII,” Acta Astronautica, Vol. 47, No 4–7, 2000, pp. 147–152CrossRefGoogle Scholar
  46. 1659).
    S. Russell, M. Vesely, C. Graham, M. Petkovic, “Progress Towards FedSat 2001 A’stralian Space Odyssey,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-IX-6Google Scholar
  47. 1660).
  48. 1661).
    A. J. Barrington-Brown, A. N. Wicks, et al., “FedSat — an advanced microsatellite based on a MicroSIL bus,” Proceedings of the 12th AIAA/USU Conference on Small Satellites, Logan, UT, Aug./Sept, 1998Google Scholar
  49. 1662).
    E. C. Graham, “FedSat: An Australian research microsatellite mission,” IAF Congress, Melbourne, Australia, 1998, in Acta Astronautica, 1999Google Scholar
  50. 1663).
    S. C. O. Grocott, “Modular Attitude Control System for Microsatellites with Stringent Pointing Requirements,” Proceedings of the 14th AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-VIII-6Google Scholar
  51. 1664).
    http://www.crcss.csiro.au/reports/rept2000/Part05.htm
  52. 1665).
    Note: ARGO is a component of the international Global Qeean Data Assimilation Experiment (GODAE).Google Scholar
  53. 1666).
    C. Graham, M. Petkovik, S. Russell, E. S. Seumahu, M. Vesely, “The FedSat Microsatellite,” Proc. of ICICS’99 (International Conference on Information Communications and Signal Processing), Singapore, Dec. 7–10, 1999Google Scholar
  54. 1667).
    B. J. Fraser, C. T. Russell, J. D. Means, F. W. Menk, C. L. Waters, “FedSat — An Australian Research Microsatellite,” Advances in Space Research, Vol 25, Issue 7–8, pp.1325–1336, 2000.CrossRefGoogle Scholar
  55. 1668).
    Information provided by Thomas P. Yunck of JPL and Bill Falkenberg of SpectrumAstro Inc.Google Scholar
  56. 1669).
    M. Usui, M. Takei, K. Arai, R. Kuramasu, “MDS Project: New Challenge of Japanese Satellite Development,” Proceedings of the 51st IAF Congress, Rio de Janeiro, Oct. 2–6,. 2000, IAF-00-U.1..06Google Scholar
  57. 1670).
    http://yyy.tksc.nasda.go.jp/Home/Projects/MDS/index_e.html
  58. 1671).
  59. 1672).
    Information provided by Akio Yamamoto of NASDAGoogle Scholar
  60. 1673).
    T. Nagai, M. Mokuno, “Small Satellite Development and Future Vision of NASDA,” Proceedings of the 6th ISU Symposium on Smaller Satellites: Bigger Business?, Strasbourg, France, May 21–23, 2001Google Scholar
  61. 1674).
    J. Freeman, C. Rudder, P. Thomas, “MightySat II: On-orbit Lab Bench for Air Force Research Laboratory,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, SSC00-I-2, Aug. 21–24, 2000Google Scholar
  62. 1675).
    R. J. Davis, J. F. Monahan, T. J. Itchkawich, “MightySAT I: Technology in Space for about a Nickel,” Proceedings of the 10th Annual AIAA/Utah State University Conference on Small Satellites, Sept. 16–19, 1996Google Scholar
  63. 1676).
    B. Braun, R. Davis, T. Itchkawich, T. Goforth, “MightySat-I: In Space,” Proceedings of 13th Annual AIAA/USU Conference on Small Satellites, Logan Utah, Aug. 23–26, 1999, SSC-99-I-3Google Scholar
  64. 1677).
    http://www.vs.afrl.af.mil/factsheets/msat.html
  65. 1678).
    B. Braun, R. Davis, T. Itchkawich, T. Goforth, “MightySat-I: Transitioning Space Technology to the Warfighter,” AIAA-99–4484, 1999Google Scholar
  66. 1679).
  67. 1680).
    http://www.vs.afrl.af.mil/vsd/mighrysatll/index.html
  68. 1681).
  69. 1682).
    http://www.vs.afrl.af.mil/factsheets/msat2.html
  70. 1683).
    L. J. Otten III, A. D. Meigs, et al., “The engineering model for the MightySat II.1 hyperspectral imager,” Proceedings of the Sensors, Systems and Next Generation Satellites, SPIE Vol. 3221–54, Sept. 1, 1997, London, UK, pp. 412–420CrossRefGoogle Scholar
  71. 1684).
    Courtesy of Leonard John Otten III of Kestrel Corporation, Albuquerque, NMGoogle Scholar
  72. 1685).
    B. Iannotta, “SWARM,” Smithsonian Air & Space, August/September, 2000, pp. 44–49Google Scholar
  73. 1686).
    Paper provided by M. A. Garcia Primo of INTAGoogle Scholar
  74. 1687).
    M. A. Garcia Primo, “Spanish MINISAT Program — Objectives and Operational Results,” Proceedings of the 4th International Symposium on Small Satellites Systems and Services, Sept. 14–18, 1998, Antibes Juan les Pins, FranceGoogle Scholar
  75. 1688).
    F. Cerezo Martinez, “ MINISAT-01 (One Year After),” Proceedings of the 4th International Symposium on Small Satellites Systems and Services, Sept. 14–18, 1998, Antibes Juan les Pins, FranceGoogle Scholar
  76. 1689).
    P. Sabatini, R. Aceti, et al, “MITA: In-Orbit Results of the Italian Small Platform and the first Earth Observation Mission, HYPSEO,” Proceedings of the 3rd International Symposium of IAA, Berlin, Apr. 2–6, 2001, pp.71–74Google Scholar
  77. 1690).
    P. Sabatini, T. Lupi, “The MITA satellite: an Italian bus for small missions,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 35–37Google Scholar
  78. 1691).
    M. Casolino, et al, “Continuation of the mission NINA: Nina-2 experiment on MITA satellite,” Proceedings of 26th ICRC, Salt Lake City, 1999, OG 4.2.17Google Scholar
  79. 1692).
    R. Sparvoli, et al., “Launch in orbit of the telescope NINA for cosmic ray observations: preliminary results,” Proceedings of The Sixth Topical Seminar on ‘Neutrino and Astro-Particle Physics,’ Centro Studi T Cappuccini’ in San Miniato al Todesco, Italy, May 17–21, 1999Google Scholar
  80. 1693).
    John D. Mill, et al., “Midcourse Space Experiment: Introduction to the Spacecraft, Instruments, and Scientific Objectives,” Journal of Spacecraft and Rockets, Vol. 31, No. 5, September-October 1994, pp. 900–907CrossRefGoogle Scholar
  81. 1694).
    J. F. Carbary, E. H. Darlington, K. Heffernan, T. J. Harris, C. I. Meng, M. J. Mayr, P. J. McEvaddy, K. Peacock, “Aerial Surveillance Sensing Including Obscured and Underground Object Detection,” Proceedings of SPIE, April 4–6, 1994, Orlando Florida, Volume 2217Google Scholar
  82. 1695).
    Note: The spatial resolution of the SPIMs is driven by the point-spread function in one direction (along the slit) and by the point-spread function and. the mirror step size in the other direction. For the 0.05° mirror steps one can assume that it is driven by the point-spread function in both directions, and is about 0.85 mrad. The spatial resolution is diminished by using the 0.1° steps or by reducing the number of bins in the readout, by co-adding 2, 4, or 8 adjacent pixels. This is to reduce the bandwidth requirement by trading spatial resolution, spectral resolution and frame rate. The nadir resolution is 0.85 mrad × 900 km ≃ 770 m. Nadir FOV is 17 mra d (1°) × 900 km ≃ 15 km × 15 km.Google Scholar
  83. 1696).
    Note: The bins are formed in the SPIM electronics by co-adding 1,2, or 4 adjacent pixels; this is done to reduce the data bandwidth requirement in cases where UVISI is not the principal instrument, or higher frame rates are needed which can be traded off against resolution. For the case of 136 and 272 bins, the bins overlap; for the case of 68 bins, the bins are noncontiguous.Google Scholar
  84. 1697).
    Information provided by Bernard Tatry of CNESGoogle Scholar
  85. 1698).
    J. P. Aguttes, “High Resolution (metric) SAR Microsatellite Based on the CNES Myriade bus,” Proceedings of IGARSS-2001, July 9–13, 2001, Sydney AustraliaGoogle Scholar
  86. 1699).
    DEMETER brochure of CNES, provided by Bernard TatryGoogle Scholar
  87. 1700).
    P. Touboul, B. Foulon, L. Lafargue, G. Metris, “The Microscope Mission,” Proceedings of the IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000, IAF-00-J1.06Google Scholar
  88. 1701).
    http://www-projet.cst.cnes.fr:8060/PARASOL/index.html 1702) Information provided by Bernard Tatry of CNES
  89. 1703).
    L. Dame, M. Meissonnier, B. Tatry, “Picard Microsatellite Program,” 5th International Symposium on Small Satellites Systems and Services, La Baule, France, June 19–23, 2000Google Scholar
  90. 1704).
    T. Wilson, C. Davis, “Naval EarthMap Observer (NEMO) Satellite,” Proceedings of SPIE, Vol. 3753, Denver, CO, July 19–21, 1999, pp. 2–11CrossRefGoogle Scholar
  91. 1705).
    Note: In Dec. 1999, STDC was acquired by Earth Search Sciences Inc. of Alexandria, VAGoogle Scholar
  92. 1706).
    http://nemo.nrl.navy.mil/public/index.html
  93. 1707).
    C. O. Davis, K. Carder, “Requirements Driven Design of an Imaging Spectrometer System for Characterization of the Coastal Environment,” Proceedings of SPIE, Vol. 3118, San Diego, CA, 1997Google Scholar
  94. 1708).
    C. O. Davis, “The Hyperspectral Remote Sensing Technology (HRST) Program,” NRL White Paper, 1997Google Scholar
  95. 1709).
    C. O. Davis, K. Carder, “Requirements Driven Design of an Imaging Spectrometer System for Characterization of the Coastal Environment,” Proceedings of SPIE, Vol. 3118, San Diego, CA, 1997Google Scholar
  96. 1710).
    M. Corson, “Calibration of the NEMO sensor imaging payload,” SPIE Proceedings, Vol. 3437, 1998Google Scholar
  97. 1711).
    A. Myers, “NEMO satellite sensor imaging payload,” SPIE Proceedings, Vol. 3437, 1998Google Scholar
  98. 1712).
    J. Bowles, et al., “Hyperspectral Data Compression and Science Algorithms for the NEMO Satellite,” Proceedings of 1st EARSeL Workshop on Imaging Spectroscopy, University of Zürich, Switzerland, Oct. 6–8. 1998, pp. 183–190Google Scholar
  99. 1713).
    http://nssdc.gsfc.nasa.gov/nmc/sc-query.html
  100. 1714).
    I. S. Haas, R. Shapiro, “The Nimbus Satellite System: Remote Sensing R&D Platform of the 1970s,” Monitoring Earth’s Ocean, Land, and Atmosphere from Space — Sensors, Systems, and Applications, Progress in Astronautics and Aeronautics, AiAA, Volume 97, 1985, pp. 71–95Google Scholar
  101. 1715).
    “The NIMBUS-7 User’s Guide,” NASA/GSFC, Prepared by The Landsat/Nimbus Project, Aug. 1978 1716) “NIMBUS-7, Observing the Atmosphere and Oceans,” NASA pamphlet Dec. 1983Google Scholar
  102. 1717).
    T. Yamawaki, T. Jono, M. Toyoshima, K. Nakagawa, A. Yamamoto, K. Shiratama, Y. Koyama, “Development of LUCE for OICETS,” 51st IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000, IAF-OO-M.2.05Google Scholar
  103. 1718).
    OICETS brochure of NASDAGoogle Scholar
  104. 1719).
    K. Nakagawa A. Yamamoto, M. Tbyoda, “Performance test result of LUCE engineering model,” Photonics West, Free Space Laser Communications Technologies XII of SPIE, San Jose, CA, Jan. 22–26, 2000Google Scholar
  105. 1720).
    http://yyy.tksc.nasda.go.jp/Home/Satellites/e/oisets_e.html
  106. 1721).
    M. Tobin, et al., “Off-the-shelf Microsatellites for Science and Technology Missions,” Proceedings of the 11th AIAA/USU Conference on Small Satellites, Sept. 15–18, 1997, Logan, UT 1722) “PICOSat Launch Set for August 2001,” Space News, Dec. 18, 2000, p. 2Google Scholar
  107. 1723).
    Information provided by Joseph. J. Surer of JHU/APL, Laurel, MDGoogle Scholar
  108. 1724).
    Information provided by Paul R. Straus of The Aerospace Corporation, El Segundo, CAGoogle Scholar
  109. 1725).
    D. Bernaerts, F. Teston, J. Bermyn, “PROBA (Project for On-Board Autonomy),” Proceedings of the 6th ISU Symposium on Smaller Satellites: Bigger Business?, Strasbourg, France, May 21–23, 2001Google Scholar
  110. 1726).
    F. Teston, R. Creasey, J. Bermyn, D. Bernaerts, K. Mellab, “PROBA: ESA’s Autonomy and Technology Demonstration Mission,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Logan UT, Sept. 23–26,1999, SSC99-V-8Google Scholar
  111. 1727).
    F. Teston, R. Creasey, J. van der Ha, “PROBA: ESA’s Autonomy and Technology Demonstration Mission,” IAA-97–1.3.05, 48th International Astronautical Congress, Oct. 6–10, 1997, Turin, ItalyGoogle Scholar
  112. 1728).
    M. A. Cutter, D. R. Lobb, T. L. Williams, R. E. Renton, “Integration & Testing of the Compact High-Resolution Imaging Spectrometer (CHRIS),” Proceedings of SPIE, Vol. 3753, Denver, CO, July 19–21, 1999, pp. 180–191CrossRefGoogle Scholar
  113. 1729).
    M. A. Cutter, D. R. Lobb, R. A. Cockshott, “Compact High Resolution Imaging Spectrometer (CHRIS),” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 205–208Google Scholar
  114. 1730).
    “Exploitation of CHRIS data from the PROBA Mission,” Experimenters Handbook, Issue 4, Oct. 18, 1999Google Scholar
  115. 1731).
    TEMIC was a daughter of Daimler-Benz until 1997 when it was acquired by Vishay and in 1998 sold to Amtel (with plants in Heilbronn, Germany and Nantes, France)Google Scholar
  116. 1732).
    R. Cockshott, D. Purll, N. Fillery, V. Lewis, “The UK Wide Angle Star Sensor (WASS),” Presented at the poster session of the 4th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, Oct. 18–21, 1999, Noordwijk.Google Scholar
  117. 1733).
    L. M. Ward, P. Axelrad, “A Combined Filter for GPS-Based Attitude and Baseline Estimation,” Navigation: Journal of The Institute of Navigation, Vol. 44, No. 2, Summer 1997, pp. 195–213Google Scholar
  118. 1734).
    L. M. Ward, P. Axelrad, “Spacecraft attitude estimation using GPS: Methodology and results for RADCAL,.” Navigating the 90s: Technology/Applications, and Policy, Proceedings of The Institute of Navigation, National Technical Meeting, Anaheim, Calif., 18–20 January, The Institute of Navigation, Alexandria, Va., pp. 813–825.Google Scholar
  119. 1735).
    Information provided by Lihua Zhang of CAST, Beijing, ChinaGoogle Scholar
  120. 1736).
    G. D. Racca, A. Elfving, A. Marini, et al., “SMART-1 mission description and development status”, Submitted to Planetary and Space Science, MS-No: PSS 79, October 30, 2000Google Scholar
  121. 1737).
    G. D. Racca, G. P. Whitcomb, B. H. Foing, “The SMART-1 Mission,” ESA Bulletin 95, Aug. 1998, pp. 72–81Google Scholar
  122. 1738).
    http://www.estec.esa.nl/spdwww/smartl/html/overview.html
  123. 1739).
  124. 1740).
    B. H. Foing, G. Racca, A. Marini, et al., “Status of SMART-1 ESA Mission to the Moon,” 31st Lunar and Planetary Science Conference, March 13–17, 2000, Houston, TXGoogle Scholar
  125. 1741).
    http://www.ssc.se/ssd/smartl.html
  126. 1742).
    http://sci.esa.int/content/doc/10/19216_.htm
  127. 1743).
    http://sspgl.bnsc.rl.ac.uk/Share/d-cixs.htm
  128. 1744).
    M. Grande, et al., “Lunar Elemental Composition and Investigations with D-CIXS X-Ray Mapping Spectrometer on SMART-1,” 31st Lunar and Planetary Science Conference, March 13–17, 2000, Houston, TXGoogle Scholar
  129. 1745).
    S. K. Dunkin, M. Grande, et al., “The D-CIXS X-Ray Spectrometer on ESA’s SMART-1 Mission to the Moon: Science Objectives,” 31st Lunar and Planetary Science Conference, March 13–17, 2000, Houston, TXGoogle Scholar
  130. 1746).
    http://disr01.mpae.gwdg.de/wuttke/SIR/SIR.htm
  131. 1747).
    P. W. Gloyer, D. J. Goldstein, “Small Payload Orbit Transfer (SPORT) System: Lowering Launch Cost Without Increased Risk,” IEEE Aerospace Conference, Big Sky, Montana, March 10–17, 2001, 0–7803–6599–2/01Google Scholar
  132. 1748).
    P. W. Gloyer, D. J. Goldstein, “ Small Payload Orbit Transfer (SPORT) System: An Innovative Approach to Lowering Missions Costs without Increased Risk,” Proceedings or the 14th Annual AIAA/USU Conference on Small Satellites, LOgan, UT, Aug. 21–24, 2000, SSC00-IV-6Google Scholar
  133. 1749).
    Information provided by Aaron Jacobovits of AeroAstroGoogle Scholar
  134. 1750).
    http://www.aeroastro.com/pressroom.html
  135. 1751).
    R. Fleeter, “New Propulsive Module for Nanosatellites,” Proceedings of the 6th ISU Symposium on Smaller Satellites: Bigger Business?, Strasbourg, France, May 21–23, 2001Google Scholar
  136. 1752).
    N. Wells, J. Eves, P. Mace, “Space Technology Research Vehicles STRV-1A and -IB,” Final Report (DRA, ESA, BMDO) Vol. 1, August 1995Google Scholar
  137. 1753).
    N. Wells, “The Space Technology Research Vehicles STRV-1A and -IB: Mission Update,” paper provided by the authorGoogle Scholar
  138. 1754).
    R. Blott, N. Wells, “The Space Technology Research Vehicles: STRV-1A,B,C&D,” Proceedings of the AIAA/ USU Conference on Small Satellites, Sept. 16–19, 1996, Logan, UTGoogle Scholar
  139. 1755).
    http://www.dra.hmg.gb/html/case/strv/menu.htm
  140. 1756).
    N. Wells, “Space Technology Research Vehicles (STRV-la and -lb): Lessons Learned After four Years in GTO,” Proceedings of the 4th International Symposium on Small Satellites Systems and Services, Sept. 14–18, 1998, Antibes Juan les Pins, FranceGoogle Scholar
  141. 1757).
    Note: Differential charging of surface material occurs when these materials are electrically isolated, either from the S./C structure or from neighboring surfaces, or when the surfaces are insulators themselves. In these situations charge build-up cannot leak away, resulting in large potential differences between neighboring surfaces.Google Scholar
  142. 1758).
    http://www.jpl.nasa.gov/adv_tech/coolers/Integ.htm
  143. 1759).
    A. Cant, H. Simpson, “STRV-1c & -d Satellite Architecture Design Document,” March 1998, provided by DERAGoogle Scholar
  144. 1760).
    N. Wells, “STRV-lc & -d Mission Definition Specification,” Feb. 1998, provided by DERAGoogle Scholar
  145. 1761).
    N. Wells, R. Blott, “STRV-1c&d Program Update,” Proceedings of the 11th AIAA/USU Conference on Small Satellites, Sept. 15–18, 1997, Logan, UTGoogle Scholar
  146. 1762).
    http://www.dera.gov.uk/html/case/strv/high.htm
  147. 1763).
    N. Wells, “Countdown to launch of the first microsatellites qualified for flight on Ariane-5 ASAP,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-I-7Google Scholar
  148. 1764).
    M. Bandecchi, W. J. Ockels, “The TEAMSAT Experience,” ESA Bulletin 95, Aug. 1998, pp. 132–143Google Scholar
  149. 1765).
    A. Bradford, F. Müller-Stute, B. Sarti, “Engineering TEAMSAT — From Concept to Delivery,” ESA Bulletin 95, Aug. 1998, pp. 144–147Google Scholar
  150. 1766).
    S. Habinc, D. Hardy, P. Sinander, C. Smith, “TEAMSAT’s Data-Handling Systems,” ESA Bulletin 95, Aug. 1998, pp. 148–151Google Scholar
  151. 1767).
    M. Jones, B. Melton, M. Bandecchi, “TEAMSAT’s Low-Cost EGSE and Mission Control Systems,” ESA Bulletin 95, Aug. 1998, pp. 152–157Google Scholar
  152. 1768).
  153. 1769).
    C. Smith, “Low-cost, ASIC-based Telemetry and Telecommand Systems — The TEAMSAT Experience,” Proceedings of the 4th International Symposium on Small Satellites Systems and Services, Sept. 14–18, 1998, Antibes Juan les Pins, FranceGoogle Scholar
  154. 1770).
    J. L. Joergehsen, et al., “Radiation Impacts on Star-Tracker Performance and Vision Systems in Space,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 393–396Google Scholar
  155. 1771).
    M. Betto, et al., “The Determination of the Attitude and Attitude Dynamics of TEAMSAT,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 397–400Google Scholar
  156. 1772).
    D. A. Arnold, “The Behavior of Long Tethers in Space,” The Journal of the Astronautical Sciences, Vol. 35, No. 1, January-March 1987, pp. 3–18Google Scholar
  157. 1773).
    I gratefully acknowledge the major review, revision and addition of this chapter provided by Michael Zedd of NRL, Washington, D. C.Google Scholar
  158. 1774).
    R. L. Forward, J. Davis, “Doing the Do-Si-Do,” Launchspace Magazine, April/May 1998Google Scholar
  159. 1775).
    M. L. Cosmo, E. C. Lorenzini (editors), “Tethers In Space Handbook,” Third Edition, Dec. 1997, NASA/MSFC, download from http://cfa-www.harvard.edu/spgroup/handbook.htmlGoogle Scholar
  160. 1776).
    L. Johnson, R. D. Estes, E. Lorenzini, et al., “Electrodynamic Tethers for Space Propulsion,” Proceedings of AIAA, Reno, NV, Jan. 12–15, 1998, AIAA 98–0983Google Scholar
  161. 1777).
  162. 1778).
  163. 1779).
    J. Oberg, “Saving MIR With A Rope Trick,” IEEE Spectrum, July 2000, Vol. 37, No. 7Google Scholar
  164. 1780).
  165. 1781).
    A. Jablonski, F. Vigneron, G. Tyc, and H. G. James, “OEDIPUS-C Mission Tether Dynamics Results,” paper presented at the Tether Technology Interchange Meeting, MSFC, Sept. 9–10, 1997, NASA/CP-1998–206900Google Scholar
  166. 1782).
    J. McCoy, et al., “Plasma Motor-Generator (PMG) Flight Results,” Proceedings of the Fourth International Conference On Tethers In Space, Science and Technology Corp., Hampton, VA, Apr. 1995, pp. 57–82Google Scholar
  167. 1783).
    L. Johnson, J. Ballance, “Propulsive Small Expendable Deployer Systems (ProSEDS) Space Demonstration,” paper presented at the Tether Technology Interchange Meeting, MSFC, Sept., 9–10, 1997, NASA/ÇP-1998–206900Google Scholar
  168. 1784).
    http://stp.msfc.nasa.gov/astp/proseds.html
  169. 1785).
    L. Johnson, “The Tether Solution,” IEEE Spectrum, July 2000, Vol. 37; No. 7Google Scholar
  170. 1786).
    http://std.msfc.nasa.gov/astp/tethers_electetherprop3.html
  171. 1787).
    H. F. Smith; “The First and Second Flights of the Small Expendable Deployer System (SEDS),” Proceedings of the Fourth International Conference On Tethers In Space, Science and Technology Corp., Hampton, VA, Apr. 1995, pp. 43–56.Google Scholar
  172. 1788).
  173. 1789).
    http://std.msfc.nasa.gov/astp/tethers_reentrycaps.html
  174. 1790).
    W. Barnds, S. Coffey, M. Davis, et. al., “TiPS: Results of a Tethered Satellite Experiment,” paper presented at the AAS/AIAA Astrodynamics Conference in August 4–7, 1997, Sun Valley, Idaho, AAS 97–600.Google Scholar
  175. 1791).
  176. 1792).
    K. T. Alfriend, W. J. Barnds, et al., “Attitude and Orbit Determination of a Tethered Satellite System,” AAS/AIAA Astrodynamics Specialist Conference, Halifax, Nova Scotia, Aug. 14–17, 1995, AAS 95–351Google Scholar
  177. 1793).
    Note: Ralph and Norton are two characters of the Honeymooner’s television fame (mainly during the 1950–60s), representing adequately the satellite mass ratioGoogle Scholar
  178. 1794).
    J. G. Izquierdo, H. Rozemeijer, S. Müncheberg, “The Tether System Experiment — Preparing for ESA’s First Tether Mission,” ESA Bulletin No 102, May 2000, pp. 139–143Google Scholar
  179. 1795).
    N. Stone, et al., “A Review of Scientific and Technological Results from the TSS-1R Mission,” paper presented at the Tether Technology Interchange Meeting, MSFC, Sept. 9–10, 1997, NASA/CP-1998–206900Google Scholar
  180. 1796).
    B. Strim, M. Pasta, and E. Allais, “TSS-1 vs. TSS-1R,” Proceedings of the Fourth International Conference On Tethers In Space, Science and Technology Corp., Hampton, VA, Apr. 1995, pp. 27–42Google Scholar
  181. 1797).
    P. Brooks, “TOPSAT — High Resolution Imaging From a Small Satellite,” Proceedings of the 3rd International Symposium of the IAA, Berlin, April 2–6, 2001, pp. 319–322Google Scholar
  182. 1798).
    Camera image courtesy of RAL, spacecraft image courtesy of DERAGoogle Scholar
  183. 1799).
    K. M. Wallace, I. Parker, “The Topsat Satellite,” IGARSS 2001, Sydney, Australia, July 9–13, 2001Google Scholar
  184. 1800).
    http://www.te.plk.af.mil/stp/tsx5/strv2/strv2.html
  185. 1801).
    S. J. Cawley, S. Murphy, A. Willig, P. S. Godfree, “The Space Technology Research Vehicle 2 Medium Wave Infrared Imager,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001Google Scholar
  186. 1802).
    K. K. Denoyer, R. S. Erwin, R. R. Ninneman, “Advanced SMART Structures Flight Experiments for Precision Spacecraft,” Acta Astronautica, Vol. 47, No 2–9, 2000, pp. 389–397CrossRefGoogle Scholar
  187. 1803).
  188. 1804).
    http://www.vsbs.plh.af.mil/projects/cease/cease.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Herbert J. Kramer
    • 1
  1. 1.GilchingGermany

Personalised recommendations