Advertisement

Space Science/Solar-Terrestrial Missions

  • Herbert J. Kramer
Chapter

Abstract

A NASA/GSFC solar-terrestrial mission in the Explorer Program (Explorer-71) with the objectives to determine: the elemental and isotopic composition of matter, the origin of the elements, the formation of the solar corona and acceleration of the solar wind. S/C designer and builder: JHU/APL. The S/C structure has two octagonal decks, 1.6 m across and 1 m high; the S/C is spin stabilized with the spin axis Earth/sun pointing (star and sun sensors). Mission launch occurred on August 25,1997 with a Delta II launch vehicle from Cape Canaveral, Florida. S/C mass = 785 kg (includes 189 kg of hydrazine fuel for orbit insertion and maintenance), power=443 W (EOL) from four fixed solar arrays, nominal life of the mission is 2 years with a five-year goal.1434)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1434).
    Information provided by D. L. Margolies of NASA/GSFCGoogle Scholar
  2. 1435).
    “The ACTIVE International Space Plasma-Wave Laboratory,” The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science, ESA SP-1107, November 1990, pp. 45–49Google Scholar
  3. 1436).
    Aktivny-IK, Interavia Space Directory, 1992–93, pp. 149Google Scholar
  4. 1437).
    W. Priedhorsky, B. W. Smith, J. J. Bloch, D. H. Holden, D. C. A. Roussel-Dupré, R. Dingier, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “The ALEXIS Small Satellite Project: Initial Flight Results,” AIAA Space Programs and Technologies Conference, Sept. 21–23,1993/ Huntsville, AL; and Proc. SPIE Vol. 2006,1993, pp. 114–126Google Scholar
  5. 1439).
    D. Roussel-Dupre, et al., “ALEXIS, the Little Satellite That Could — 4 Years Later,” Proceedings of the 11th AIAA/USU Conference on Small Satellites, Sept. 15–18,1997, Logan, UT, SSC97-IV-3Google Scholar
  6. 1439).
    D. Roussel-Dupre, et al., “ALEXIS, the Little Satellite That Could — 4 Years Later,” Proceedings of the 11th AIAA/USU Conference on Small Satellites, Sept. 15–18,1997, Logan, UT, SSC97-IV-3Google Scholar
  7. 1440).
    http ://nis -www.lanl.gov/nis-projects/alexis/Google Scholar
  8. 1441).
    Information provided by J. Bloch of LANL, Los Alamos, NMGoogle Scholar
  9. 1442).
    W. C. Priedhorsky, J. J. Bloch, S. P. Wallin, W. T. Armstrong, O. H. W. Siegmund, J. Griffee, R. Fleeter, “The ALEXIS Small Satellite Project: Better, Faster, Cheaper Faces Reality,” IEEE Transactions on Nuclear Science, Vol. 40, No. 4, August 4,1993, pp. 863–873CrossRefGoogle Scholar
  10. 1443).
    J. J. Bloch, et al., “Design, Performance and Calibration of the ALEXIS Ultrasoft X-Ray Telescopes,” SPIE, Vol. 1344,1990, pp. 154–165CrossRefGoogle Scholar
  11. 1444).
    Dateline: Los Alamos, Current Missions, “ALEXIS: The Little Satellite That Could,” Jan./Feb./Mar. issue 1998, pp. 12–14Google Scholar
  12. 1445).
    D. Roussel-Dupre, J. J. Bloch, E. M. Johnson, J. Theiler, “ALEXIS-the Six Year Telescope Flight Experience,” Proceedings of SPIE, Vol. 3765,1999 pp. 329–340, EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, Oswald H. Siegmund; Kathryn A. Flanagan; Eds.CrossRefGoogle Scholar
  13. 1446).
    Ampte brochure of MPE GarchingGoogle Scholar
  14. 1447).
    Special Issue on the Active Magnetosphere Particle Tracer Explorer (AMPTE), in IEEE Trans, on Geoscience and Remote Sensing, May 1985, Volume GE-23, No. 3, pp. 175–314Google Scholar
  15. 1448).
    A. Valenzuela, G Haerendel, H. Föppl, F. Melzner, H. Neuss, E. Riegler, J. Stöcker, O. Bauer, H. Höfner, J. Loidl, “The AMPTE artificial comet experiments,” reprinted from Nature Vol. 320, No. 6064, pp. 700–723, April 24, 1986CrossRefGoogle Scholar
  16. 1449).
    “AMPTE,” Interavia Space Directory 1992–93, p. 149Google Scholar
  17. 1450).
    “The Active Plasma Experiments in the Earth’s Magnetometers,” The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group, ESA SP-1107, November 1990, pp. 55–60Google Scholar
  18. 1451).
    Information provided by Yu. M. Mikhailov, IZMIRANGoogle Scholar
  19. 1452).
    Information provided by S. Grahn of SSCGoogle Scholar
  20. 1453).
    Information provided by O. Norberg of IRF, KirunaGoogle Scholar
  21. 1454).
    ISTP Global GEOSPACE Science — Energy Transfer in Geospace, ESA/NASA/ISAS brochure, 1992Google Scholar
  22. 1455).
    J. Credland, G. Mecke, J. Ellwood, F. Drigani, P. Ferri, et al., Special Section of the Cluster mission, spacecraft, payload, data, and mission operations, ESA Bulletin, No. 84, Nov. 1995, pp. 113–150Google Scholar
  23. 1456).
    C. P. Escoubet, C. T. Russell, R. Schmidt [editors], “The Cluster and Phoenix Missions,” published in a special Cluster issue of Space Science Reviews, Vol. 79, No. 1–2,1997, KluverGoogle Scholar
  24. 1457).
    http://sci.esa.int/missions/index.cfm7TypeID=8&page=about
  25. 1458).
    “The Cluster Mission — Scientific and Technical Aspects of the Instruments,” ESA SP-1103, ISSN 0379–6566, Oct. 1988Google Scholar
  26. 1459).
    Note: The new S/C was named after the mythical bird “Phoenix.” In ancient Egypt and in classical antiquity, phoenix is a fabulous long-lived bird associated with the worship of the sun. As its end approached, the phoenix fashioned a nest of aromatic boughs and spices, set it on fire, and was consumed in the flames. From the pyre miraculously sprang a new phoenix, which, after embalming its father’s ashes in an egg of myrrh, flew with the ashes to Heliopolis (“City of the Sun”) in Egypt, where it deposited them on the altar in the temple of the Egyptian god of the sun, Re.Google Scholar
  27. 1460).
    “The Cluster-II Mission — Rising from the Ashes,” The Cluster-II Project Team, ESA Bulletin, 102, May 2000, pp.47–53Google Scholar
  28. 1461).
    C. Ph. Escoubet, “Cluster-II: Scientific Objectives and Data Dissemination,” ESA Bulletin, 102, May 2000, pp. 54–60Google Scholar
  29. 1462).
    M. Warhaut, S. Matussi, P. Ferri, “Cluster-II: Evolution of the Operations Concept,” ESA Bulletin, 102, May, pp. 61–67Google Scholar
  30. 1463).
    J. Credland, R. Schmidt, “The Resurrection of the Cluster Scientific Mission,” ESA Bulletin, No. 91, August 1997, pp. 5–10Google Scholar
  31. 1464).
  32. 1465).
    The Cluster mission is covered in considerable detail in Space Science Reviews, Vol. 79. pages 11 – 658. (Jan. 1997)Google Scholar
  33. 1466).
    V. N. Oraevsky, Yu. D. Zhugzhda, “Project CORONAS-I — Orbital Observations of the Solar Activity and Oscillations, 1991,” Coronas Information Series, paper by AIP, DLR/DFD and IZMIRAN, K Pflug (editor)Google Scholar
  34. 1467).
    I. Sobelman, I Zhitnik et al, “XUV and Optical Observations of the Sun by Means of the TEREK-C Telescope/ Coronograph and the RES-C Spectroheliometer aboard the CORONAS-I satellite,” 1992, Coronas Information Series, paper by AIP, DLR/DFD and IZMIRAN, K Pflug (editor)Google Scholar
  35. 1468).
    Information provided by Vladimir Kuznetsov of IZMIRAN, TroitskGoogle Scholar
  36. 1469).
    Yu. D. Kotov, S. I. Nikolsky, V. I. Dranovsky, “Satellite Project PHOTON for the study of solar hard radiation,” paper provided by Yu. KotovGoogle Scholar
  37. 1470).
    Yu. Kotov, K. Pflug, G. Schmidtke, “EUV-PHOKA, “paper provided by K. PflugGoogle Scholar
  38. 1471).
    “A Small Equatorial Satellite to Complement the Global Geospace Science Program — Equator — S,” MPE Equa-tor-S proposal, Sept. 30,1991Google Scholar
  39. 1472).
    “EQUATOR-S — A Contribution to the Interagency Solar-Terrestrial Physics Programme,” MPE paper provided by H. HöfnerGoogle Scholar
  40. 1473).
    G. Haerendel, “Equator-S: The Mission and first Coordinated Measurements with GEOTAIL,” Advances in Space Research, Vol. 25, No 7–8,2000, pp. 1277–1286Google Scholar
  41. 1474).
    Journal of Geomagnetism and Geoelectricity including Space Physics, Volume 33, No. 1, 1981, featuring EXOS-B, pp. 1–160Google Scholar
  42. 1475).
    K. I. Oyama et al, “Electron Temperature Probe on Board Japan’s 9th Scientific Satellite Ohzora,” J. Geomagnetism and Geoelectricity, Volume 37, 1985, pp. 413–430CrossRefGoogle Scholar
  43. 1476).
    EXOS-D (Akebono) — Japan’s 12th Scientific Satellite — A Study of auroral particle acceleration processes, ISAS brochureGoogle Scholar
  44. 1477).
    Selected papers on EXOS-D (Akebono) Observations in Geophysical Research Letters, Volume 18, No. 2, Feb. 1991, pp. 293–352Google Scholar
  45. 1478).
    M. André (editor) and the Freja Science Team, “The Freja Scientific Payload,” Swedish Institute of Space Physics, Kiruna, May 1991Google Scholar
  46. 1479).
    “The Freja Scientific Satellite,” brochure of Swedish Space CorporationGoogle Scholar
  47. 1480).
    Note: In the initial project phase (1995) the solar-wind sample return mission was called “Suess-Urey.” It was renamed to “Genesis” in 1996 after the completion of Phase A.Google Scholar
  48. 1481).
  49. 1482).
    http://www.gps.caltech.edu/genesis/genesis3.html
  50. 1483).
    D. Rapp, F. Naderi, M. Neugebauer, D. Sevilla, D. Sweetnam, D. C. Wiens, D. Burnett, et al., “The Suess-Urey Mission (Return of Solar Matter to Earth),” Acta Astronautica 39,1996, pp. 229–238CrossRefGoogle Scholar
  51. 1484).
    A. J. Jurewicz, D. S. Burnett, R. C. Wiens, et al., “Genesis Solar -Wind Sample Return Mission: The Materials,” Proceedings of the 31st Lunar and Planetary Science Conference, March 13–17,2000, Houston, TXGoogle Scholar
  52. 1485).
    D. J. McComas, B. L. Barraclough, R. C. Wiens, et al, “Solar Wind Concentrator,” Measurement Techniques in Space Plasmas: Particles, Geophysical Monograph 102, AGU, 1998Google Scholar
  53. 1486).
    “The GEOTAIL Mission,” in NASAFacts, GSFC, June, 1992Google Scholar
  54. 1487).
    “Delta Launches GEOTAIL,” Space News, July 27-Aug. 9,1992, p. 12Google Scholar
  55. 1488).
    http://www.isas.ac.jp/e/enterp/missions/index.html
  56. 1489).
    “GEOTAIL Instruments and Initial Results,” Foreword by A. Nishida, Journal of Geomagnetism and Geoelec-tricity, ISSN 0022–1392, Vol. 46,1994,Google Scholar
  57. 1490).
  58. 1491).
  59. 1492).
    Information provided by Brian R. Dennis of NASA/GSFCGoogle Scholar
  60. 1493).
    W. C. Gibson, et al., “IMAGE, the First of the New MIDEX Missions,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 23–26,1999, SSC99-VII-2Google Scholar
  61. 1494).
  62. 1495).
  63. 1496).
    J. L. Burch, J. L. Green, S. A. Fuselier, “Mission Allows Magnetospheric Physicists to “See” the Invisible,” EOS Transactions of AGU, Vol. 82, No 22, May 29,2001, pp. 241 and 245CrossRefGoogle Scholar
  64. 1497).
    T. E. Moore, et al., “The Low Energy Neutral Atom Imager for IMAGE,” Kluver Academic Publishers, 1999Google Scholar
  65. 1498).
    C. J. Pollock, et al, “Medium Energy Neutral Atom (MENA) Imager for the IMAGE Mission,” Space Science Reviews (Kluver), Vol 91,2000, pp. 113–154CrossRefGoogle Scholar
  66. 1499).
    http://pluto.space.swri.edu/IMAGE/HENA_description.html
  67. 1500).
    http://sprg.ssl.berkeley.edu/image/sidescript.html
  68. 1501).
  69. 1502).
    J. H. King, “Availability of IMP-7 and IMP-8 Data for the IMS Period,” The IMS Source Book, GSFC, pp. 10–20,Google Scholar
  70. 1503).
  71. 1504).
    “INTERBALL — Study of Magnetospheric Plasma and Solar-Terrestrial Relations,” Academy of Sciences of the USSR Space Research Institute, 1987Google Scholar
  72. 1505).
    J. Büchner, L. M. Seljenyi, “Interbol erforscht die Magnetosphäre,” Astronomie und Raumfahrt, GDR, 25. Jahrgang, 1987, Heft 3, pp. 77–80Google Scholar
  73. 1506).
    ”Interball Project — Magnetospheric System of 4 Spacecraft,” The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science, ESA SP-1107, November 1990, pp. 61–73 1507) “Interball — Mission and Payload,” document of 410 pages, by RKA, IKI, and CNES, May 1995Google Scholar
  74. 1508).
    P. Triska, et al., “Ground-Based Control and Telemetry Station Panskä Ves: 20 Years of Operation with Scientific Microsatellites,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16,1999, pp. 147–150Google Scholar
  75. 1509).
    Special issue on ‘Instrumentation for the International Sun-Earth Explorer Spacecraft’ in IEEE Transactions on Geoscience Electronics, Volume 16, No.3, July 1978Google Scholar
  76. 1510).
    K. P. Wenzel, “Earth’s Distant Geomagnetic Tail Explored by ISEE-3 Spacecraft,” ESA Bulletin 37,1984 pp. 46–50Google Scholar
  77. 1511).
    A. Balogh, R. J. Hynds, J. J. van Rooijen, G. A. Stevens, T. R. Sanderson, K. P. Wenzel, “Energetic Particles in the Heliosphere — Results from the ISEE-3 Spacecraft,” ESA Bulletin 27,1981, pp. 4–12Google Scholar
  78. 1512).
    “The Sblar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science,” ESA SP-1107, November 1990, pp. 11–15Google Scholar
  79. 1513).
    “ISTP Global GEOSPACE Science — Energy Transport in Geospace,” ESA/NASA/ISAS brochure, 1992 of GSFCGoogle Scholar
  80. 1514).
    http://www.www—spof.gsfc.nasa.gov/istp/polar/polar_inst.htmlGoogle Scholar
  81. 1515).
    M. G. Henderson, G. D. Reeves, A. M. Jorgensen, et al., “POLAR CEPPAD/IPS Energetic Neutral Atom (ENA) Images of a Substorm Injection,” Advances in Space Research, Vol. 25, No. 12, 2000, pp. 2407–2416CrossRefGoogle Scholar
  82. 1516).
    http://www.css.tayloru.edu/~physics/seps.html
  83. 1517).
    L. A. Frank, et al., “The Visible Imaging System (VIS) for the Polar Spacecraft,” Space Science Reviews, Vol. 71, 1995, pp. 297–328CrossRefGoogle Scholar
  84. 1519).
    Information provided by R. Ibba of ASI, Rome, ItalyGoogle Scholar
  85. 1520).
    “Solar Mesosphere Explorer — Scientific Data & Publications,” Final Report, LASP, December 1989Google Scholar
  86. 1521).
    J. R. Cowley, G. M. Lawrence, “Earth Limb Altitude Determination for the Solar Mesosphere Explorer,” AIAA-83–0429Google Scholar
  87. 1522).
    Ch. Barth, “Solar Mesosphere Explorer to Study Ozone,” Nature, Volume 293, Sept. 24,1981CrossRefGoogle Scholar
  88. 1523).
    J. R. Stuart, K. A. Gause, “Solar Mesosphere Explorer Mission,” AIAA paper, 17th Aerospace Sciences Meeting, Jan. 15–17,1979,Google Scholar
  89. 1524).
    “Solar Mesosphere Explorer — Experiment Description,” LASP paper, University of Colorado at BoulderGoogle Scholar
  90. 1525).
    Ch. Barth, et al., “Solar Mesosphere Explorer: scientific objectives and results,” Geophysical Research. Letters, Vol. 10, No. 4, p. 237,1983CrossRefMathSciNetGoogle Scholar
  91. 1526).
    J. G. Watzin, “SMEX-LITE: NASA’s Next Generation Small Explorer,” Proceedings of the 10th Annual AIAA/ USU Conference on Small Satellites, Logan, UT, Sept. 16–19,1996Google Scholar
  92. 1527).
    D. N. Baker, G. M. Mason, O. Figueroa, G. Colon, J. G. Watzin, R. M. Aleman, “The Solar; Anomalous, and Mag-netospheric Particle Explorer (SAMPEX) Mission,” Preprint 93–128, U. of Maryland — see also (by the same authors): IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, No. 3, May 1993, pp. 531–541CrossRefGoogle Scholar
  93. 1528).
    D. Baker, G. Chin, R. Pfaff, “NASA’s Small Explorer Program,” Physics Today, Dec. 1991, pp. 44–51Google Scholar
  94. 1529).
    C. W. Carlson, “The Fast Auroral Snapshot Explorer,” EOS, Vol. 73, No. 23,1992, pp. 249,253,254CrossRefGoogle Scholar
  95. 1530).
  96. 1531).
  97. 1532).
    R. E. Ergun, C. W. Carlson, F. S. Mozer, et al., “The FAST Satellite Fields Instrument,” Space Science Review, 2000Google Scholar
  98. 1533).
    Information provided by C. Cattell of UCBGoogle Scholar
  99. 1534).
    T. D. Tarbell, M. Bruner, B. Jurcevich, J. Lernen, K. Strong, A. Title, J. Wolfson, L. Gloub, R. Fisher, “The Transition Region and Coronal Explorer,” Proc. of the Third SOHO Workshop, Estes Park, CO, September 26–29,1994, pp. 375–384Google Scholar
  100. 1535).
    TRACE www page of GSFC and of LockheedGoogle Scholar
  101. 1536).
    S. P. Maran, B. E. Woodgate, “A Second Chance for Solar Max,” Sky & Telescope, June 1984, pp. 498–500Google Scholar
  102. 1537).
    A. Chaikin, “Solar Max: Back from the Edge,” Sky & Telescope, June 1984, pp. 494–497Google Scholar
  103. 1538).
    “NASA’s Solar Maximum Mission: A Look at the New Sun,” June 1987, NASA brochure, edited by J. B. GurmanGoogle Scholar
  104. 1539).
    “The Solar Maximum Mission Experiments,” Solar Physics, Volume 65, pp. 5–109Google Scholar
  105. 1540).
    R. C. Willson, S. Gulkis, M. Janssen, S. H. Hudson, G. A. Chapman, “Observations of Solar Irradiance Variability,” Science, Volume 211, Feb. 1981, pp. 700–702CrossRefGoogle Scholar
  106. 1541).
    A. C. Aikin, W. Henze, D. J. Kendig, R. Nakatsuka, H. J. P. Smith, “Variations of Mesospheric Equatorial Ozone as observed by the Solar Maximum Mission,” Geophysical Research Letters, Vol. 17, No. 3, March 1990, pp. 299–300CrossRefGoogle Scholar
  107. 1542).
    P. Lo Galbo, M. Bouffard, “SOHO — A Cooperative Scientific Mission to the Sun,” ESA Bulletin, Aug. 1992, pp. 21–25Google Scholar
  108. 1543).
    “The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science,” ESA SP-1107, November 1990, pp. 21–24Google Scholar
  109. 1544).
    J. Credland, F. Felici, M. Grensemann, J. A. Steinz, “Three Missions, Three Launches, Six Spacecraft for Science in 1995,” ESA-Bulletin, No. 82, May 1995, pp. 36–47Google Scholar
  110. 1545).
    The SOHO Mission — Scientific and Technical Aspects of the Instruments, ESA SP-1104, ISSN 0379–6566, Nov. 1988Google Scholar
  111. 1546).
    F Felici, F C. Vandenbussche, C. Berner, R. Thomas, W. Worrall, et al., Special Section of the SOHO project, spacecraft, payload, and operations in ESA Bulletin No. 84, Nov. 1995, pp. 81–112Google Scholar
  112. 1547).
    K. A. Lidiard, P. F. Gray, “Optical design of the coronal diagnostic spectrometer (an instrument on the Solar and Heliospheric Observatory),” Optical Engineering, Vol. 36, No. 8, Aug. 1997, pp. 2311–2319CrossRefGoogle Scholar
  113. 1548).
  114. 1549).
    B. Fleck, P. Brekke, et al., “Four Years of SOHO Discoveries — Some Highlights,” ESA Bulletin, 102, May 2000, pp. 69–86Google Scholar
  115. 1550).
    The SOLAR-A Mission,” The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science, ESA SP-1107, November 1990, pp. 74–76Google Scholar
  116. 1551).
    ”Yohkoh’s Prodigious Output helps Scientists Study Sun,” Space News, June 7–13,1993, p. 12Google Scholar
  117. 1552).
    http://www.isas.ac.Jp/e/enterp/missions/index.html
  118. 1553).
    http://science.msfc.nasa.gov/ssl/pad/solar/solar-b.htm
  119. 1554).
    Courtesy of Takeo Kosugi of ISASGoogle Scholar
  120. 1555).
    G. L. Baer, J. E. Eichstedt, D. A. Ossing, “Solar Terrestrial Relations Observatory (STEREO) Mission and Concept of Operations,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26,1999, Logan UT, SSC99-IIb-lGoogle Scholar
  121. 1556).
    “The Sun and Heliosphere in Three Dimensions,’’ Report of the NASA Science Definition Team for the STEREO MissionGoogle Scholar
  122. 1557).
    J. Galloway, “STEREO Mission Design,” NASA/GSFC paper, Sept. 1,1999Google Scholar
  123. 1558).
    http://sd-www.jhuapl.edu/STEREO/index.html
  124. 1559).
    http://stp.gsfc.nasa.gov/missions/stereo/stereo.htm
  125. 1560).
    K. Strohbehn, M. N. Martin, S. E. Jaskulek, “Micro Digital Solar Attitude Detector,” JHU/APL Technical Digest, Vol. 22, No 2, 2001, pp. 104–105Google Scholar
  126. 1561).
    Image courtesy of Leslie M. Cusick, NASA/GSFCGoogle Scholar
  127. 1562).
    http://sd -www.jhuapl.edu/STEREO/Inst/payload.htmlGoogle Scholar
  128. 1563).
    R. A. Howard, J. D. Moses, D. G. Socker, “Sun Earth Connection Coronal and Heliospheric Investigation (SEC-CHI),” Proceedings of SPIE, Vol. 4139–26Google Scholar
  129. 1564).
    http://www.pxi.com/SECCHIGoogle Scholar
  130. 1565).
  131. 1566).
  132. 1567).
    http://www-lep.gsfc.nasa.gov/swaves/swaves.html
  133. 1568).
    D. J. McComas, “Two Wide-Angle Imaging Neutral-Atom Spectrometers,”Google Scholar
  134. 1569).
    http://nis-www.lanl.gov/nis-projects/rwins/
  135. 1570).
    ESA Bulletin No. 63, August 1990, Special Issue on UlyssesGoogle Scholar
  136. 1571).
    N. Angold, et al, “Ulysses Operations at Jupiter — Planning the Unknown,” ESA Bulletin No. 72, November 1992, pp. 44–51Google Scholar
  137. 1572).
    R. G. Marsden, K. P. Wenzel, “The Ulysses Jupiter Flyby — The Scientific Results,” ESA Bulletin No. 72, November 1992, pp. 52–59Google Scholar
  138. 1573).
    R. G. Marsden, “Ulysses Explores the South Pole of the Sun,” ESA Bulletin No. 82, May 1995, pp. 48–55Google Scholar
  139. 1574).
    K. P. Wenzel, et al., “The Ulysses Mission,” Astronomy and Astrophysics, Supplement Series, Vol. 92, January 1992, pp. 207–219Google Scholar
  140. 1575).
    R. G. Marsden, “Ulysses at Solar Maximum and Beyond,” ESA Bulletin, No 103, Aug. 2000, pp. 41–47Google Scholar
  141. 1576).
    A. Mc Garry, N. Angold, “Ulysses 7 Years On — Operational Challenges and Lessons Learned,” ESA Bulletin No. 92, November 1997, pp. 69–74Google Scholar
  142. 1577).
    R. G. Marsden, K. P. Wenzel, “The Heliosphere in Perspective — Key Results from the Ulysses Mission at Solar Minimum,” ESA Bulletin No. 92, November 1997, pp. 75–81Google Scholar
  143. 1578).
    B. Hultqvist, “The Swedish Satellite Project Viking,” Journal of Geophysical Research, Vol. 95, No. A5„ May 1, 1990, pp. 5749–5752CrossRefGoogle Scholar
  144. 1579).
    B. Hultqvist, “The Viking Project,” Geophysical Research Letters, Volume 14, No. 4, April 1987, pp. 379–382CrossRefGoogle Scholar
  145. 1580).
    “The Viking Program,” EOS Transactions, American Geophysical Union, Volume 67, No. 42, Oct. 21,1986, pp. 793–795Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Herbert J. Kramer
    • 1
  1. 1.GilchingGermany

Personalised recommendations