Advertisement

Shuttle — Selected Missions and Payloads

  • Herbert J. Kramer
Chapter

Abstract

ASTRO-SPAS is the generic name of a reusable platform, designed and built by DASA (formerly MBB, Munich, Germany) under DLR contract, which is used as a self-contained and autonomous free-flyer service structure for special Shuttle payloads with free-flyer requirements for short-duration missions (up to the length of a Shuttle mission). The SPAS structure consists of low-weight, high-stiffness carbon fiber tubes with titanium nodes. Standardized mounting panels are provided for subsystem and payload equipment. The platform is deployed/retrieved by the Shuttle’s robot arm RMS (Remote Manipulator System) for a free-flyer mission which may entail separations from the Shuttle up to 100 km. As a service structure, SPAS is particularly suited as a test bed for new science instrumentation and technology demonstrations in space.1362)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1362).
    R. Wattenbach, K. Moritz, “Astronomical Shuttle Pallet Satellite (ASTRO-SPAS),” Acta Astronautica, Vol. 40, No. 10, pp. 723–732, 1997CrossRefGoogle Scholar
  2. 1363).
    I. Appenzeller, et al., “Medium-Resolution Far-Ultraviolet Spectroscopy of PKS 2155–304,” The Astrophysical Journal, 439: L33–L37, Feb. 1, 1995CrossRefGoogle Scholar
  3. 1364).
    P. Barthol, K. U. Grossmann, D. Offermann, “Telescope design of the CRISTA/SPAS experiment aboard the Space Shuttle,” SPIE, Vol 1331, Stray Radiation in Optical Systems, 1990, pp. 54–63CrossRefGoogle Scholar
  4. 1365).
    L. Ward, P. Axelrad, “A Combined Filter for GPS-Based Attitude and Baseline Determination,” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City, MO, pp. 1047–1061Google Scholar
  5. 1366).
    D. Offermann, et al., “Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) experiment and middle atmosphere variability,” Journal of Geophysical Research, Vol. 104, No D13, July 20, 1999, pp. 16,311–16,325Google Scholar
  6. 1367).
    R. R. Conway, M. H. Stevens, et al., “Middle Atmosphere High Resolution Spectrograph Investigation,” Journal of Geophysical Research, Vol. 104, No D13, July 20, 1999, pp. 16,327–16,348CrossRefGoogle Scholar
  7. 1368).
    M. Cislaghi, U. Thomas, M. Lellouch, J. M. Pairot, “Development and Verification of Automated Rendezvous for ATV,” Proceedings IAF-96-T.2.08, Oct. 7–11, 1996, BeijingGoogle Scholar
  8. 1369).
    M. Cislaghi, U. Thomas, M. Lellouch, G. Limouzin, “ATV — Pre-development Program — Flight Demonstrations,” IAF-97.T.2.03Google Scholar
  9. 1370).
    Jack Kaye, “Summary of ATLAS Shuttle Missions,” Paper presented at the EOS-B Atmospheric Payload Panel Meeting Washington, D. C, Feb. 26–27, 1991Google Scholar
  10. 1371).
    Information provided by the Earth Science Application Division (ESAD Office) at NASA HQ, WashingtonGoogle Scholar
  11. 1372).
    SUSIM brochure of Naval Research Lab, available at NASA HQ’s Document Resource FacilityGoogle Scholar
  12. 1373).
    “Calibration of Long Term Satellite Ozone Data Sets Using the Space Shuttle,” E. Hilsenrath, in Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Vol. 4, pp. 409–412Google Scholar
  13. 1374).
    S. A. McDermott, D. J. Goldstein, “The Bitsy™ Spacecraft Kernel: Reducing Nanosatellite Mission Cost in the MSFC Future-X Program Through Miniaturized technologies,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-IX-8Google Scholar
  14. 1375).
    J. C. Kemp, et al., “Cryogenic Michelson Interferometer Spectrometer for Space Shuttle Application,” Proceedings of SPIE, Vol. 686, 1986, pp. 151–159. Application: Infrared Detectors, Sensors, and Focal Plane ArraysCrossRefGoogle Scholar
  15. 1376).
    C. L. Wyatt, “CIRRIS-1A interferometer: radiometric analysis,” Applied Optics, Vol. 28, No. 23, Dec. 1, 1989, pp. 5069–5072CrossRefGoogle Scholar
  16. 1377).
    G. E. Bingham, et al., “Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS-1A) Earth limb spectral measurements, calibration, and atmospheric O3, HNO3, CFC-12, and CFC-11 profile retrieval,” Journal of Geophysical Research, Vol. 102, D3, Feb. 20, 1997, pp. 3547–3558CrossRefGoogle Scholar
  17. 1378).
    D. K. Zhou, et al., “Stratospheric CH4, N2O, H2O, NO2, N2O5, and ClONO2 profiles retrieved from Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS-1AVSTS-39 measurements,” Journal of Geophysical Research, Vol. 102, D3, Feb. 20, 1997, pp. 3559–3573CrossRefGoogle Scholar
  18. 1379).
    ESA Press Release, ESA/ESTEC, 1991Google Scholar
  19. 1380).
    P. Ferri, H. Hübner, S. Kellock, W. Wimmer, “The Joint ESA-NASA Operations for Eureca’s Deployment and Retrieval, “ESA Bulletin, Number 76, November 1993, pp. 81–90Google Scholar
  20. 1381).
    F. Dreger, J. Fertig, D. Gawthrope, S. Martin, et. al., “Eureca: The Flight Dynamics of the Retrieval,” ESA Bulletin, Number 76, November 1993, pp. 92–99Google Scholar
  21. 1382).
    http://www.ksc.nasa.gov/shuttle/technology/sts-newsref/spacelab.html
  22. 1383).
  23. 1384).
    J. D. Spinhirne, et al., “Preliminary Spaceflight Results from the Uncooled Infrared Spectral Imaging Radiometer (ISIR) on Shuttle Mission STS-85,” SPIE, 1998Google Scholar
  24. 1385).
    A. S. Levine (editor), “LDEF-69 Months in Space, First Post-Retrieval Symposium,” NASA Conference Publication 3134 (Part 1 and Part 2), Proceedings of a symposium sponsored by NASA at Kissimmee, Florida, June 2–8, 1991Google Scholar
  25. 1386).
    W. Flury, “Europe’s Contribution to the Long Duration Exposure Facility (LDEF) Meteoroid and Debris Impact Analysis,” ESA Bulletin, Number 76, November 1993, pp. 112–118Google Scholar
  26. 1387).
    B.B. Schardt, B.H. Mollberg, “The Orbiter Camera Payload System’s Large-Format Camera and Attitude Reference System,” in Monitoring the Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, AIAA, 1985, pp. 684 – 709Google Scholar
  27. 1388).
    “Lidar In-Space Technology Experiment (LITE): NASA’s first In-Space Lidar System for Atmospheric Research,” Optical Engineering, Jan. 1991, Vol. 30 No. 1 pp. 88–95Google Scholar
  28. 1389).
    Information provided by V. Connors and D. O. Neil of NASA/LaRCGoogle Scholar
  29. 1390).
    F. Ackermann, J. Bodechtel, F. Lanzl, D. Meissner, P. Seige, H. Winkenbach;”MOMS-02 — Ein multispektrales Stereo-Bildaufnahmesystem für die zweite deutsche Spacelab-Mission D2,” Geo-Informations-Systeme, Zeitschrift für interdisziplinären Austausch innerhalb der Geowissenschaften, Wichmann Verlag, Jahrgang 2, Heft 3/1989, S. 5 – 11Google Scholar
  30. 1391).
    J. Bodechtel, D. Meißner, P. Seige, H. Winkenbach, J. Zilger, “The MOMS Experiment on STS-7 and STS-11-First Results and Further Development of the Modular Optoelectronic Multispectral Scanner,” Proceedings of the Eighteenth International Symposium on Remote Sensing of the Environment, Volume 1, 1984, pp. 77–85Google Scholar
  31. 1392).
    “MOMS-01: First Results of STS-7 Mission,” IGARSS’83Google Scholar
  32. 1393).
    J. Bodechtel, R. Haydn, J. Zilger, “MOMS-01: Missions and Results,” Monitoring Earth’s Ocean, Land, and Atmosphere form Space — Sensors, Systems, and Applications, edited by A. Schnapf, Progress in Astronautics and Aeronautics, AIAA, Vol. 97 1985, pp. 524–535Google Scholar
  33. 1394).
    P. Seige, “MOMS-02 — Eine hochauflösende stereoskopische und multispektrale Kamera auf der zweiten deutschen Spacelab Mission D-2,” DLR-Nachrichten, Heft 77, Februar 1995Google Scholar
  34. 1395).
    J. Bodechtel, S. Lutz, “Neue Wege der Erderkundung,” aus Einsichten, Forschung an der LMU, pp. 38–43, 1992Google Scholar
  35. 1396).
    MBB Endbericht, “MOMS-02 auf D-2,” die Entwicklung von EOS über MOMS-EM, MOMS-01 bis MOMS-02, Doc. No. MOMS-02.RP.0100.0, Dec. 20, 1993Google Scholar
  36. 1397).
    Courtesy of P. Seige, DLRGoogle Scholar
  37. 1398).
    D. Caruso, “CONAE’s Satellite Missions,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 375–381Google Scholar
  38. 1399).
    D. Caruso, “CONAE’s Satellite Missions,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 375–381Google Scholar
  39. 1400).
  40. 1401).
    Note: The technology of spatial heterodyne spectroscopy was developed by Fred Roesler and John Harlander of UWM in 1990. SHIMMER observations represent the first spaceborne demonstration of this technology.Google Scholar
  41. 1402).
    Information provided by Robert R. Conway and Christoph R. Englert of NRLGoogle Scholar
  42. 1403).
    http://uap-www.nrl.navy.mil/shimmer/shimmer.htm
  43. 1404).
    J. Harlander, H. T. Tran, F. L. Roesler, K. P. Jaehnig, et al., “Field-Widened Spatial Heterodyne Spectroscopy: correcting for Optical Defects and New Vacuum Ultraviolet Performance Tests,” EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy V, SPIE Proceedings 1994, Vol. 2280, p. 310–319Google Scholar
  44. 1405).
    SPARTAN Capabilities Statement, SP515, 1993, NASA/GSFCGoogle Scholar
  45. 1406).
  46. 1407).
    F. H. Bauer, J. R. O’Donnell, “Space-Based GPS 1996 Mission Overview,” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City MO, pp. 1293–1302Google Scholar
  47. 1408).
    F. Bauer, E. Lightsey, et al., “Pre-Flight Testing of the SPARTAN GADACS Experiment,” Proceedings of ION GPS-94, Salt Lake City, pp. 1233–1241Google Scholar
  48. 1409).
    J. Way, “Spaceborne Imaging Radar — From Remote Sensing Science to Earth Science Questions,” Launchspace Magazine, Volume 3.04, Aug/Sep 1998Google Scholar
  49. 1410).
    Manual of Remote Sensing, Second Edition, American Society of Photogrammetry, 1983, pp. 1707–1710Google Scholar
  50. 1411).
    H. v.d. Piepen, V. Amann, H. Helbig, HH. Kim, W. Hart, et al. “The Promise of Remote Sensing,” IEEE paper presented at IGARSS ‘82, June 1–4, MunichGoogle Scholar
  51. 1412).
    “X-band Synthetic Aperture Radar (X-SAR) and its Shuttle-Borne Application for Experiments,” paper by Herwig Öttl and Francesco ValdoniGoogle Scholar
  52. 1413).
    R.L. Jordan, B. L. Huneycutt, M. Werner, “The SIR-C/X-SAR Synthetic Aperture Radar System,” Proceedings of the IEEE, Vol. 33, No. 4, July 1995, pp. 829–839Google Scholar
  53. 1414).
    Special Issue on SIR-C/X-SAR, IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 4, July 1995Google Scholar
  54. 1415).
    R.L. Jordan, B. L. Huneycutt, M. Werner, “The SIR-C/X-SAR Synthetic Aperture Radar System,” Proceedings of the IEEE, Vol. 79, No. 6, June 1991, pp. 827–838CrossRefGoogle Scholar
  55. 1416).
    F. V Stuhr, R. L. Jordan, M. U. Werner, “SIR-C/X-SAR A Multifaceted Radar,” IEEE Aerospace and Electronic Systems Magazine, Vol. 10, No. 10, Oct. 1995, pp. 15–25CrossRefGoogle Scholar
  56. 1417).
    “Spacelab-1 Metric Camera, User Handbook and Data Catalogue,” compiled by M. Schroeder, E Suckfüll, G. Todd, and P. Lohmann of DLR, Oberpfaffenhofen, Dec. 1986Google Scholar
  57. 1418).
    “Overview of ATMOS Results from Spacelab-3,” Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. 64–66Google Scholar
  58. 1419).
    S. D. Holland, “The NASA Electronic Still Camera System,” IEEE IGARSS ’92 Volume I, pp. 149–151Google Scholar
  59. 1420).
    D. L. Amsbury, J. M. Bremer, “Recent Developments in Space Shuttle Remote Sensing, using hand-held Film Cameras,” IGARSS ’92, Volume I, pp. 152–154Google Scholar
  60. 1421).
    S. G. Ackleson, D. E. Pitts, “Global Distribution of hand-held Photographs of Ocean and Coastal Regions Taken during Space Shuttle Missions, 1981–1991,” IEEE IGARSS ’92 Volume II, pp. 1550–1552Google Scholar
  61. 1422).
    R. M. Nelson, K. J. Willis, W. J. Daley, E R. Brumbaugh, J. M. Bremer, “Cataloging and Indexing — The Development of the Space Shuttle Mission Data Base and Catalogs from Earth Observations hand-held Photography,” IEEE IGARSS ’92 Volume I, pp. 155–157Google Scholar
  62. 1423).
  63. 1424).
    http://www.shuttlepresskit.com/STS-88/payloadl9.htm
  64. 1425).
    Note: While the L-band radar/antenna is flown as part of the overall structure, there is no interferometric L-band capability due to the large antenna dimensions needed at the outboard location. The L-band radar is not being operated, however, some of its electronic capabilities are used for the C-RADAR.Google Scholar
  65. 1426).
    M. U. Werner, “X-SAR/SRTM a Spaceborne Single Pass Interferometric SAR,” Joint workshop of ISPRS WG 1/1,1/3, and 1/4: Sensors and Mapping from Space, University of Hannover, Germany, Sept 29 — Oct. 2, 1997Google Scholar
  66. 1427).
    SRTM Information Sheet of JPLGoogle Scholar
  67. 1428).
    R. L. Jordan, E. R. Caro, Y. Kim, Y. Shen, F. V. Stuhr, M. U. Werner., “Shuttle Radar Topography Mapper,” Proceedings of the EUROPTO Conference: Symposium on Remote Sensing, Conference on Microwave Instrumentation for Remote Sensing of the Earth II, Taormina, Italy, Sept. 24–26, 1996Google Scholar
  68. 1429).
    P. Chien, “Around the World in 11 Days,” Launchspace Magazine, Vol. 3.06, Dec. 1998Google Scholar
  69. 1430).
    M. U. Werner, J. Heinstadt, “A Spaceborne X-band Single Pass Interferometric SAR Antenna System,” ESTEC Workshop on Large Antennas for Radio Astronomy, Noordwijk, NL, Feb. 28–29, 1996Google Scholar
  70. 1431).
    K. B. Klein, M. U. Werner, “System Performance Monitoring for X-SAR/SRTM,” EUSAR’98, VDE-Verlag, May 25–27, 1998, Friedrichshafen, Germany, pp. 383–386Google Scholar
  71. 1432).
    “Calibration of Long Term Satellite Ozone Data Sets Using the Space Shuttle,” E. Hilsenrath, in Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Vol. 4, pp. 409–412Google Scholar
  72. 1433).
    Information provided by E. Hilsenrath of NASA/GSFC, Greenbelt, MDGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Herbert J. Kramer
    • 1
  1. 1.GilchingGermany

Personalised recommendations