Automatic trinocular 3D reconstruction of coronary artery centerlines from rotational X-ray angiography

  • C. Blondel
  • R. Vaillant
  • F. Devernay
  • G. Malandain
  • N. Ayache

Abstract

We present a method for fully automatic 3D reconstruction of coronary artery centerlines using three X-ray angiogram projections from a single rotating monoplane acquisition. The reconstruction method consists of three steps: (1) filtering and segmenting the images using a multiscale analysis, (2) matching points in two of the segmented images using the information from the third image, and (3) reconstructing in 3D the matched points. This method needs good calibration of the system geometry and requires breatheld acquisitions. The final algorithm is formulated as an energy minimization problem that we solve using dynamic programming optimization. This method provides a fast and automatic way to compute 3D models of vessels centerlines. It has been applied to both phantoms, for validation purposes, and patient data sets.

Keywords

Coronary angiography 3D reconstruction matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Messenger J.C., Chen S.Y., Carroll J.D., Burchenal J.E., Kioussopoulos K. and Groves B.M., “3D coronary reconstruction from routine single-plane coronary angiograms: clinical validation and quantitative analysis of the right coronary artery in 100 patients”, The International Journal of Cardiac Imaging 16(6): 413–427, December 2000.CrossRefGoogle Scholar
  2. 2.
    Chen S.Y. and Carroll J.D., “3-D reconstruction of coronary arterial tree to optimize angiographic visualization”, IEEE Transactions in Medical Imaging 19(4), April 2000.Google Scholar
  3. 3.
    Chen S.Y. and Carroll J.D., “Computer Assisted Coronary Intervention by Use of On-line 3D Reconstruction and Optimal View Strategy”’, Medical Image Computing and Computer-Assisted Intervention Proceedings, Lecture Notes in Computer Science Vol. 1496: 377–385, Springer, Cambridge, October 1998.CrossRefGoogle Scholar
  4. 4.
    Shechter G., Devernay F., Coste-Manière E. and McVeigh E., “Temporal tracking of 3D coronary arteries in projection angiograms”, Proceedings of SPIE Medical Imaging 4684, San Diego, February 2002.Google Scholar
  5. 5.
    Ding Z. and Friedman M.H., “Quantification of 3-D coronary arterial motion using clinical biplane cineangiograms”, The International Journal of Cardiac Imaging 16(5): 331–346, October 2000.CrossRefGoogle Scholar
  6. 6.
    Krissian K., Malandain G., Ayache, N., Vaillant R. and Trousset Y., “Model-Based Multiscale Detection of 3D Vessels”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 722–727, Santa Barbara, 1998Google Scholar
  7. 7.
    Mourgues F., Devernay F., Malandain G. and Coste-Manière E., “3D+t Modeling of Coronary Artery Tree from Standard Non Simultaneous Angiograms”, Medical Image Computing and Computer-Assisted Intervention Proceedings, Lecture Notes in Computer Science Vol. 2208:, Springer, Utrecht, 2001.Google Scholar
  8. 8.
    Faugeras O. and Robert L., “What can two images tell us about a third one?”, European Conference on Computer Vision, 485–492, 1994.Google Scholar
  9. 9.
    Ayache N., “Artificial Vision for Mobile Robots: Stereo Vision and Multisensory Perception”, 135–154, The MIT Press, Cambridge, 1991.Google Scholar
  10. 10.
    Reiber J., Koning G., Dijkstra J., Wahle A, Goedhart B., Sheehan F.H. etal., “Angiography and Intravascular Ultrasound”, in: Sonka M., Fitzpatrick J.M., editors. Handbook of Medical Imaging - Volume 2: Medical Image Processing and Analysis. Belligham, WA: SPIE, 2000:711–808.Google Scholar
  11. 11.
    Triggs B., McLauchlan P., Hartley R., Fitzgibbon A., “Bundle Adjustment - A Modern Synthesis” in “Vision Algorithms: Theory and Practice”: 298–375, Springer Verlag, Lectures Notes in Computer Science, 2000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • C. Blondel
    • 1
  • R. Vaillant
    • 2
  • F. Devernay
    • 1
  • G. Malandain
    • 1
  • N. Ayache
    • 1
  1. 1.INRIASophia AntipolisFrance
  2. 2.GEMSEBucFrance

Personalised recommendations