Advertisement

Dielectric Spectroscopy and Multidimensional NMR — a Comparison

  • R. Böhmer
  • F. Kremer

Abstract

Broadband dielectric spectroscopy (BDS) and solid-state nuclear magnetic resonance (NMR) are two of the working horses in modern materials research. Both methods are well suited to study the dynamics in disordered condensed matter in an extremely broad range of more than 15 decades in time and/or frequency. However, the strategies employed to retrieve information from a given substance are quite different for NMR as compared to BDS. To the practitioner of conventional dielectric spectroscopy, who is used to the relatively simple sampling of the electrical polarization in the frequency or time domains, the wealth of NMR techniques sometimes appears bewildering. Another difference between the two methods is that quantum effects are rarely needed explicitly in order to analyze a dielectric experiment, while in NMR at least some elementary knowledge of quantum mechanics is required from the outset. The benefits of the seeming complexity inherent in theory and experiment of NMR, as compared to BDS, are numerous: NMR is element specific and the selectivity to the dynamics of certain sites or groups within a molecule or to certain components within a mixture can often be enhanced further by spectral filtering or isotope labeling. Some of the more sophisticated NMR techniques, e.g., when performing multidimensional spectroscopy, due to limitations imposed by the requirement to achieve an acceptable signal to noise ratio, can be relatively time consuming as compared to experiments carried out using BDS. This advantage of the latter method may be viewed as arising at the expense of the fact that usually only an integral response of the subset of those degrees of freedom is measured which couple to charge carriers or dipole moments in the sample. Hence systematic (as a function of composition, say) BDS studies are often required to obtain firm assignments of relaxation processes as seen in, e.g., dielectric loss spectra. The combined application of experimental methods, and particularly of the two complementary ones dealt with in the present chapter, has greatly advanced our understanding of the molecular dynamics in disordered materials.

Keywords

Dielectric Spectroscopy Chem Phys Chemical Shift Anisotropy Dynamic Heterogeneity Broadband Dielectric Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Debye P (1929) Polare Molekeln. Hirzel S, LeipzigGoogle Scholar
  2. 2.
    Fröhlich H (1958) Theory of dielectrics. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    McCrum NG, Read BE, Williams G (1967) Anelastic and dielectric effects in polymeric solids. WileyGoogle Scholar
  4. 4.
    Hill N, Vaughan WE, Price AH, Davies M (1969) Dielectric properties and molecular be-haviour. Van Nostrand Reinhold, New YorkGoogle Scholar
  5. 5.
    Böttcher CJF, Bordewijk P (1973) Theory of electric polarization, vol 2. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Scaife BKP (1998) Principles of dielectrics. Clarendon Press, OxfordGoogle Scholar
  7. 7.
    Abragam A (1961) The principles of nuclear magnetism. Clarendon, OxfordGoogle Scholar
  8. 8.
    Slichter CP (1990) Principles of magnetic resonance, 3rd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. 9.
    Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, OxfordGoogle Scholar
  10. 10.
    Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic, LondonGoogle Scholar
  11. 11.
    Kimmich R (1997) NMR: tomography, diffusometry, relaxometry. Springer, BerlinGoogle Scholar
  12. 12.
    It should be noted that recent optical techniques allow to achieve tremendous population differences (>10–1) with many exciting applicationsGoogle Scholar
  13. 13.
    See, e.g., the contributions by Slichter WP and Connor TM in (1971) NMR of polymers, vol 4. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. 14.
    To keep the treatment simple, and since we mainly consider overall isotropic systems, we will not explicitly give the more general formulation in terms of spherical harmonics or Wigner rotation matricesGoogle Scholar
  15. 15.
    Beevers M, Elliott DA, Williams G (1980) Polymer 21:13 and references cited thereinGoogle Scholar
  16. 16.
    Cole RH (1982) J Phys Chem 86:4700Google Scholar
  17. 17.
    Israeloff NE, Wang XZ (1997) Rev Sci Instrum 68:1543; Grigera TS, Israeloff NE (1999) Phys Rev Lett 83:5038Google Scholar
  18. 18.
    Musevic I, Kityk A, Skarabot M, Blinc R (1997) Phys Rev Lett 79:1062Google Scholar
  19. 19.
    O’Brien KP, Weissman MB, Sheehy D, Viehland DD (1997) Phys Rev B 56:11365Google Scholar
  20. 20.
    Bellon L, Ciliberto S, Laroche C (2001) Europhys Lett 53:511Google Scholar
  21. 21.
    Müller KA, Thomas H (1991) Structural phase transitions I. Topics in Current Physics, vol 23. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. 22.
    Bloembergen N, Purcell EM, Pound RV (1948) Phys Rev 73:679Google Scholar
  23. 23.
    Diezemann G, Sillescu H, Hinze G, Böhmer R (1998) Phys Rev E 57:4398Google Scholar
  24. 24.
    Cole KS, Cole RH (1941) J Chem Phys 9:341; Davidson DW, Cole RH (1951) J Chem Phys 19:1484Google Scholar
  25. 25.
    Chamberlin RV (1999) Phys Rev Lett 82:2520Google Scholar
  26. 26.
    Tarjus G, Kivelson D, Kivelson S (1997) ACS Sym Ser 676:67Google Scholar
  27. 27.
    Noack F (1971) In: NMR — basic principles and progress, vol 3. Springer, Berlin Heidelberg New York, pp 83–144Google Scholar
  28. 28.
    Beckman P (1988) Phys Rep 171:85Google Scholar
  29. 29.
    Angell CA, Böhmer R (2002) Mechanical relaxations of glassy systems. In: Magalas LB (ed) Mechanical spectroscopy and its applications in material science. Kluwer, Dordrecht, see also chap 16Google Scholar
  30. 30.
    Böhmer R, Giebenhain U, Loidl A (1994) Mol Phys 82:531Google Scholar
  31. 31.
    In fact, for Eq. (17.4) the assumption was made that t pt m or that no exchange takes place during t p Google Scholar
  32. 32.
    Fleischer G, Fujara F (1994) In: NMR - basic principles and progress, vol 30. Springer, Berlin Heidelberg New York, pp 159–207Google Scholar
  33. 33.
    Callaghan PT (1991) Principles of NMR microscopy. Clarendon, OxfordGoogle Scholar
  34. 34.
    Blümich B (2000) NMR imaging of materials. Oxford University PressGoogle Scholar
  35. 35.
    McCall DW, Douglass DC, Anderson EW (1963) Ber Bunsenges Phys Chem 67:336; Stejskal EO, Tanner JE (1965) J Chem Phys 42:288Google Scholar
  36. 36.
    If pulsed field gradients are used q/γ isthe product of width and strength of the gradient pulse and S 2 (q,t m ) can be obtained from the ratio of the spin echo amplitudes with and without field gradients appliedGoogle Scholar
  37. 37.
    Hertz HG (1974) In: Lascombe J (ed) Molecular motion in liquids. Reindel, Dordrecht, p 337Google Scholar
  38. 38.
    Kärger J, Ruthven DM (1992) Diffusion in zeolites and other microporous solids. Wiley, New YorkGoogle Scholar
  39. 39.
    Feiweier T, Geil B, Pospiech EM, Fujara F, Winter R (2000) Phys Rev E 62:8182Google Scholar
  40. 40.
    Xu Z, Stebbins JF (1995) Science 270:1332Google Scholar
  41. 41.
    Larsen RG, Shore J, Schmidt-Rohr K, Emsley L, Long H, Pines A, Janicke M, Chmelka B (1993) Chem Phys Lett 214:220Google Scholar
  42. 42.
    e.g., Gullion T, Conradi MS (1985) Phys Rev B 32:7076Google Scholar
  43. 43.
    Blinc R, Dolinsek J, Zalar B (1995) Solid State Ionics 77:97Google Scholar
  44. 44.
    Haibel A, Nimtz G, Pelster R, Jaggi R (1998) Phys Rev E 57:4838Google Scholar
  45. 45.
    Chang I, Sillescu H (1997) J Phys Chem B 101:8794Google Scholar
  46. 46.
    Initially ηrather than τ was used to monitor rotational correlation timesGoogle Scholar
  47. 47.
    For a recent review of the dynamic conductivity, see Dyre JC, Schrøder TB (2000) Rev Mod Phys 72:873 and references cited thereinGoogle Scholar
  48. 48.
    Here for simplicity a single diffusing ion species with charge e and concentration n are assumedGoogle Scholar
  49. 49.
    Isard JO (1999) J Non-Cryst Solids 246:16Google Scholar
  50. 50.
    Greaves GN, Ngai KL (1995) Phys Rev B 52:6358 and references cited thereinGoogle Scholar
  51. 51.
    See, e.g., Elliot SR (1990) Physics of amorphous materials, 2nd edn. Longman, LondonGoogle Scholar
  52. 52.
    It may be anticipated that in well ordered crystals adjacent sites along the conduction pathway are characterized by considerable differences in the associated (EFG) tensors and thus NMR frequencies. This may be expressed by saying that viewed from the hopping ion the relevant tensor performs large-angle jumpsGoogle Scholar
  53. 53.
    For an estimate for the mean rotation angle <θl > which leads to a decay of g l (t m ) to g l(0)/e it may suffice here to consider θ(0) = 90° as the initial orientation. Then (math)(math),〈02) ≈ 40.5°, etc. Slightly different values are obtained (Sillescu H, private communication) if an average over all initial positions is carried outGoogle Scholar
  54. 54.
    Anderson JE (1972) Faraday Symp Chem Soc 6:82Google Scholar
  55. 55.
    Hinze G (1998) Phys Rev E 57:2010Google Scholar
  56. 56.
    Vogel M, Rössler E (2000) J Magn Reson 147:43Google Scholar
  57. 57.
    Fujara F, Wefing S, Spiess HW (1986) J Chem Phys 84:4579Google Scholar
  58. 58.
    Gallenkamp U, Jungnickel BJ (1989) Ber Bunsenges Phys Chem 93:585Google Scholar
  59. 59.
    Dejardin JL, Kalmykov YP (2000) J Chem Phys 112:2916 and references cited thereinGoogle Scholar
  60. 60.
    Bellini T, Mantegazza F, Degiorgio V, Avallone R, Saville DA (1999) Phys Rev Lett 82:5160Google Scholar
  61. 61.
    Inoue T, Mizukami Y, Okamoto H, Matsui H, Watanabe H, Kanaya T, Osaki K (1996) Macromolecules 29:6240Google Scholar
  62. 62.
    Böhmer R (1991) J Phys D Appl Phys 24:1391Google Scholar
  63. 63.
    Ernst RM (1992) Phys Rev B 46:13,697Google Scholar
  64. 64.
    Schiener B, Böhmer R, Loidl A, Chamberlin RV (1996) Science 274:752; Böhmer R, Diezemann G (2002) Principles and applications of pulsed dielectric spectroscopy and nonresonant dielectric hole burning. In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin Heidelberg New York, chap 14Google Scholar
  65. 65.
    Böhmer R (1998) Phase Trans 65:211Google Scholar
  66. 66.
    This usually presents no problem for the probes, 1H, 2H, and 13C, mainly discussed in the present articleGoogle Scholar
  67. 67.
    Winterhalter J, Maier D, Grabowski DA, Honerkamp J, Müller S, Schmidt C (1999) J Chem Phys 110:4035 and references cited thereinGoogle Scholar
  68. 68.
    Spiess HW, Sillescu H (1981) J Magn Reson 42:381Google Scholar
  69. 69.
    Kuhns PL, Conradi MS (1982) J Chem Phys 77:1771Google Scholar
  70. 70.
    Here, like in several other places, we leave out details, see [9]Google Scholar
  71. 71.
    Jeener J, Meier BH, Bachmann P, Ernst RR (1979) J Chem Phys 71:4546Google Scholar
  72. 72.
    Hagemeyer A, Schmidt-Rohr K, Spiess HW (1989 Adv Magn Reson 13:85Google Scholar
  73. 73.
    Schmidt C, Wefing S, Blümich B, Spiess HW (1986) Chem Phys Lett 130.184; Schmidt C, Blümich B, Spiess HW (1988) J Magn Reson 79:269Google Scholar
  74. 74.
    Schaefer D, Leisen J, Spiess HW (1995) J Magn Reson A 115:60Google Scholar
  75. 75.
    Glarum S (1960) J Chem Phys 33:1371Google Scholar
  76. 76.
    Anderson JE, Ullman R (1967) J Chem Phys 47:2178Google Scholar
  77. 77.
    Schmidt-Rohr K, Spiess HW (1991) Phys Rev Lett 66:3020Google Scholar
  78. 78.
    Cicerone MT, Ediger MD (1995) J Chem Phys 103:5684; Ediger MD (2000) Annu Rev Phys Chem 51:99Google Scholar
  79. 79.
    Richert R (1993) Chem Phys Lett 216:223; Richert R (2000) J Chem Phys 113:8404Google Scholar
  80. 80.
    Sillescu H (1996) J Chem Phys 104:4877Google Scholar
  81. 81.
    Heuer A (1997) Phys Rev E 56:730Google Scholar
  82. 82.
    Diezemann G (1997) J Chem Phys 107:10,112Google Scholar
  83. 83.
    Sillescu H (1999) J Non-Cryst Solids 243:81Google Scholar
  84. 84.
    Böhmer R, Chamberlin RV, Diezemann G, Geil B, Heuer A, Hinze G, Kuebler SC, Richert R, Schiener B, Sillescu H, Spiess HW, Tracht U, Wilhelm M (1998) J Non-Cryst Solids 235/237:1Google Scholar
  85. 85.
    Hinze G, Diezemann G, Sillescu H (1998) Europhys Lett 44:565Google Scholar
  86. 86.
    It should be noted that in the limit t m 1 = t m 3 0 the term with l = 0 does not decay to below 7/15 even in the presence of exchangeGoogle Scholar
  87. 87.
    Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW (1998) Phys Rev Lett 81:2727; Tracht U, Wilhelm M, Heuer A, Spiess HW (1999) J Magn Reson 140:460Google Scholar
  88. 88.
    Reinsberg SA, Qiu XH, Wilhelm M, Spiess HW, Ediger MD (2001) J Chem Phys 114:7299Google Scholar
  89. 89.
    Also for the ‘normal’ F 4 (t m 2 ) experiments CP is used, but only to enhance the signal intensity and to reduce the recycle delay. These measures are also taken for the F 4 CP(t m 2) experiments, but they are not crucial to understand the clue of the approachGoogle Scholar
  90. 90.
    Blochowicz T, Kudlik A, Benkhof S, Senker J, Rössler E, Hinze G (1999) J Chem Phys 110:12011Google Scholar
  91. 91.
    Böhmer R, Diezemann G, Hinze G, Rössler E (2001) Prog NMR Spectrosc 39:191Google Scholar
  92. 92.
    Böhmer R, Angell CA (1994) In: Richert R, Blumen A (eds) Disorder effects on relax-ational processes. Springer, Berlin Heidelberg New York, p 11 and references cited there inGoogle Scholar
  93. 93.
    Hinze G, Sillescu H (1996) J Chem Phys 104:314. Here we refer to toluene-d5, deuterated at the aromatic ring, so that one is sensitive to the structural relaxation rather than to the methyl group dynamicsGoogle Scholar
  94. 94.
    Beevers M, Elliott DA, Williams G (1980) Fararday Trans II 76:112Google Scholar
  95. 95.
    Tracht U, Heuer A, Spiess HW (1998) J Non-Cryst Solids 235/237:27Google Scholar
  96. 96.
    Schnauss W, Fujara F, Sillescu H (1992) J Chem Phys 97:1378Google Scholar
  97. 97.
    Vogel M, Rössler E (2001) J Chem Phys B 114:5802Google Scholar
  98. 98.
    Lunkenheimer P (1999) Dielectric spectroscopy of glassy dynamics. Shaker, Aachen; Lunkenheimer P (private communication)Google Scholar
  99. 99.
    Böhmer R, Ngai KL, Angell CA, Plazek DL (1993) J Chem Phys 99:4201Google Scholar
  100. 100.
    Johari GP, Goldstein M (1970) J Chem Phys 53:2372Google Scholar
  101. 101.
    Schneider U, Brand R, Lunkenheimer P, Loidl A (2000) Phys Rev Lett 84:5560Google Scholar
  102. 102.
    Ngai KL, Lunkenheimer P, Léon C, Brand R, Schneider U, Loidl A (2001) J Chem Phys 115:1405Google Scholar
  103. 103.
    Spiess HW (1985) Adv Polym Sci 66:23Google Scholar
  104. 104.
    Blum FD (1997) Macromolecules 30:5331Google Scholar
  105. 105.
    Böhmer R, Hinze G (1998) J Chem Phys 109:241Google Scholar
  106. 106.
    Diezemann G, Böhmer R, Hinze G, Sillescu H (1998) J Non-Cryst Solids 235/237:121Google Scholar
  107. 107.
    Strongly asymmetric jump angle distributions are also predicted on the basis of an elastic model, Dyre JC (1999) Phys Rev E 59:2458; Dyre JC (1999) Phys Rev E 59:7243Google Scholar
  108. 108.
    Diehl RM, Fujara F, Sillescu H (1990) Europhys Lett 13:257Google Scholar
  109. 109.
    Geil B, Fujara F, Sillescu H (1998) J Magn Reson 130:18Google Scholar
  110. 110.
    van Dusschoten D, Tracht U, Heuer A, Spiess HW (1999) J Phys Chem A 103:8359Google Scholar
  111. 111.
    Wachner AM, Jeffrey KR (1999) J Chem Phys 111:10,611Google Scholar
  112. 112.
    Jörg T, Böhmer R, Sillescu H, Zimmermann H (2000) Europhys Lett 49:748Google Scholar
  113. 113.
    Simon GP (1997) In: Runt J, Fitzgerald J (eds) Dielectric spectroscopy of polymeric materials: fundamentals and applications. Washington, ACS, chap 12Google Scholar
  114. 114.
    Dong RY (1994) Nuclear magnetic resonance of liquid crystals. Springer, Berlin Heidelberg New YorkGoogle Scholar
  115. 115.
    Schmidt C, Spiess HW (1998) In: Demus D, Goodby J, Gray GW, Spiess HW, Vill V (eds) Handbook of liquid crystals, vol 1.Wiley-VCH,Weinheim, p 595–618Google Scholar
  116. 116.
    Glüsen B, Kettner A, Kopitzke J, Wendorff JH (1998) J Non-Cryst Solids 241:113; Kettner A, Wendorff JH (1999) Liquid Cryst 26:483Google Scholar
  117. 117.
    Vallerien SU, Kremer F, Hüser B, Spiess HW (1994) Colloid Polym Sci 267:583Google Scholar
  118. 118.
    Vallerien SU, Werth M, Kremer F, Spiess HW (1990) Liquid Cryst 8:889Google Scholar
  119. 119.
    Werth M, Vallerien SU, Spiess HW (1991) Liquid Cryst 10:759Google Scholar
  120. 120.
    Schwiegk S, Werth M, Leisen J, Wegner G, Spiess HW (1993) Acta Polymer 44:31Google Scholar
  121. 121.
    Möller M, Wendorff JH, Werth M, Spiess HW (1994) J Non-Cryst Solids 170:295Google Scholar
  122. 122.
    Ngai KL (1996) J Non-Cryst Solids 197:1Google Scholar
  123. 123.
    Spiess HW (1985) Polym Sci 66:23Google Scholar
  124. 124.
    Goldfarb D, Luz Z, Zimmermann H (1981) J Phys 42:1303Google Scholar
  125. 125.
    Poupko R, Luz Z, Spielberg N, Zimmermann H (1989) J Am Chem Soc 111:6094Google Scholar
  126. 126.
    Leisen J, Werth M, Boeffel C, Spiess HW (1992) J Chem Phys 97:3749Google Scholar
  127. 127.
    Of course also dye diffusion is a useful tool, see, e.g., Daoud M, Louis G, Quélin X, Gharbia M, Gharbi A, Perett P (1995) Liquid Cryst 19:833Google Scholar
  128. 128.
    Böhmer R (unpublished)Google Scholar
  129. 129.
    Spiess HW is thanked for providing the sampleGoogle Scholar
  130. 130.
    Grinberg F, Kimmich R (1995) J Chem Phys 103:365Google Scholar
  131. 131.
    Chang I, Diezemann G, Hinze G, Böhmer R, Sillescu H (1997) J Magn Reson 124:165Google Scholar
  132. 132.
    Schmidt-Rohr K, Kulik AS, Beckham HW, Ohlemacher A, Pawelzik U, Boeffel C, Spiess HW (1994) Macromolecules 27:4733Google Scholar
  133. 133.
    Kulik AS, Beckham HW, Schmidt-Rohr K, Radloff D, Pawelzik U, Boeffel C, Spiess HW (1994) Macromolecules 27:4746Google Scholar
  134. 134.
    Kuebler SC, Heuer A, Spiess HW (1996) Macromolecules 29:7089Google Scholar
  135. 135.
    Kuebler SC, Schaefer DJ, Boeffel C, Pawelzik U, Spiess HW (1997) Macromolecules 30:6597Google Scholar
  136. 136.
    Pfändler S (1995) Dissertation ETH No.10924,Zürich; Cereghetti PM (2000) Dissertation ETH No. 13806, ZürichGoogle Scholar
  137. 137.
    Gomez-Ribelles JL, Diaz-Calleja R (1985) J Polym Sci Polym Phys Ed 23:1297Google Scholar
  138. 138.
    Muzeau E, Perez J, Johari GP (1991) Macromolecules 24:4713Google Scholar
  139. 139.
    Barrall GA, Schmidt-Rohr K, Lee YK, Landfester K, Zimmermann H, Chingas GC, Pines A (1996) J Chem Phys 104:509 studied PMMA dispersed in colloidal suspensionGoogle Scholar
  140. 140.
    Tracht U, Heuer A, Spiess HW (1999) J Chem Phys 111:3720Google Scholar
  141. 141.
    Heuer A, Leisen J, Kuebler SC, Spiess HW (1996) J Chem Phys 105:7088Google Scholar
  142. 142.
    Kulik A, Spiess HW (1994) Makromol Chem 195:1755Google Scholar
  143. 143.
    If a single jump angle prevails circular ridges correspond to flip angles of ±45° or 180±45°, cf. [9]Google Scholar
  144. 144.
    Garwe F, Schönhals A, Lockwenz H, Beiner M, Schröter K, Donth E (1996) Macro-molecules 29:247Google Scholar
  145. 145.
    Ishida Y, Yamafuji K (1961) Kolloid Z 177:97Google Scholar
  146. 146.
    Heuer A, Wilhelm M, Zimmermann H, Spiess HW (1995) Phys Rev Lett 75:2851Google Scholar
  147. 147.
    Winterlich M et al. (in preparation)Google Scholar
  148. 148.
    Wang CY, Ediger MD (1999) J Phys Chem B 103:4177Google Scholar
  149. 149.
    Böhmer R, Hinze G, Diezemann G, Geil B, Sillescu H (1996) Europhys Lett 36:55Google Scholar
  150. 150.
    Vidal Russell E, Israeloff NE (2000) Nature 408:695Google Scholar
  151. 151.
    Basché T, Moerner WE, Orrit M, Wild UP (1997) Single-molecule optical detection, imaging and spectroscopy. VCH, WeinheimGoogle Scholar
  152. 152.
    Sillescu H, Böhmer R, Diezemann G, Hinze G (2002) J Non-Cryst Solids (in press)Google Scholar
  153. 153.
    It has to be pointed out that from photobleaching studies it was concluded on a long lived heterogeneity, with a time scale separation from the primary response which depends strongly on temperature [78]Google Scholar
  154. 154.
    Farnan I (1998) Curr Opinion Solid State Mater Sci 3:371Google Scholar
  155. 155.
    Fitzgerald JJ (ed) (1999) Solid state NMR spectroscopy of inorganic materials. ACS, Washington DCGoogle Scholar
  156. 156.
    Brinkmann D (1992) Prog NMR Spectrosc 24:527Google Scholar
  157. 157.
    Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) J Phys Chem 78:631; Hasz WC, Moynihan CT, Tick PA (1994) J Non-Cryst Solids 172/174:1363Google Scholar
  158. 158.
    Hayler L, Goldstein M (1977) J Chem Phys 66:4736Google Scholar
  159. 159.
    Funke K, Hermeling J, Kümpers J (1988) Z Naturforsch A 43:1094; Cramer C, Funke K, Buscher M, Happe A, Saatkamp T, Wilmer D (1995) Phil Mag B 71:713; Ngai KL, Cramer C, Saatkamp T, Funke K (1996) In: Giordano M, Leporini D, Tosi MP (eds) Non-equilibrium phenomena in supercooled fluids, glasses and amorphous materials. World Scientific, Pisa, pp 3–21Google Scholar
  160. 160.
    Pimenov A, Lunkenheimer P, Rall H, Kohlhaas R, Loidl A, Böhmer R (1996) Phys Rev E 54:676; Pimenov A, Lunkenheimer P, Nicklas M, Böhmer R, Loidl A, Angell CA (1997) J Non-Cryst Solids 220:83; Lunkenheimer P, Pimenov A, Loidl A (1997) Phys Rev Lett 78:2995Google Scholar
  161. 161.
    Wagner H, Richert R (1999) J Appl Phys 85:1750Google Scholar
  162. 162.
    Pimenov A, Loidl A, Böhmer R (1997) J Non-Cryst Solids 212:89Google Scholar
  163. 163.
    Sen S, Stebbins JF (1997) Phys Rev Lett 78:3495Google Scholar
  164. 164.
    Sen S, Stebbins JF (1998) Phys Rev B 58:8379Google Scholar
  165. 165.
    Zürn C, Titze A, Diezemann G, Böhmer R (1999) J Phys Chem B 103:4109Google Scholar
  166. 166.
    Götze W, Sjögren L (1992) Rep Prog Phys 55:241Google Scholar
  167. 167.
    Mezei F, Knaak W, Farago B (1987) Phys Rev Lett 58:571Google Scholar
  168. 168.
    It is clear that in detail many differences may exist between the spectral densities as derived from NMR and from impedance spectroscopy, see, e.g., Tatsumisago M, Angell CA, Martin SW (1992) J Chem Phys 97:6968; Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) J Appl Phys 88:3113Google Scholar
  169. 169.
    Lu X, Jain H, Kanert O, Küchler R, Dieckhöfer J (1994) Phil Mag B 70:1045Google Scholar
  170. 170.
    Mai C, Etienne S, Perez J, Johari GP (1985) Phil Mag B 50:657Google Scholar
  171. 171.
    Jacobsson P, Börjesson L, Hassan AK, Torell LM (1994) J Non-Cryst Solids 172/174:161Google Scholar
  172. 172.
    Kamiyama T, Shibata K, Suzuki K, Nakamura Y (1995) Physica B 213:483Google Scholar
  173. 173.
    Vogel M, Rössler E (1998) J Phys Chem A 102:2102 find a related superposition in a binary low molecular weight glass former. Using a 2D experiment they were able to map out the time scale on which dynamic exchange takes placeGoogle Scholar
  174. 174.
    Richert R, Böhmer R (1999) Phys Rev Lett 83:4337Google Scholar
  175. 175.
    Moynihan CT (1998) J Non-Cryst Solids 235/237:781Google Scholar
  176. 176.
    Fleischer G, Rittig F, Štěpánek R, Almadal K, Papadakis CM (1999) Macomolecules 32:1956Google Scholar
  177. 177.
    Rittig F, Kärger J, Papadakis CM, Fleischer G, Štěpánek R, Almdal K (1999) Phys Chem Chem Phys 1:3923Google Scholar
  178. 178.
    Fleischer G, Rittig F, Kärger J, Papadakis CM, Mortensen K, Almdal K, Štěpánek R (1999) J Chem Phys 111:2789Google Scholar
  179. 179.
    Papadakis CM, Almdal K, Mortensen K, Rittig F, Fleischer G, Štěpánek R (2000) Eur Phys J E 1:275Google Scholar
  180. 180.
    Rittig F, Fleischer G, Kärger J, Papadakis CM, Almdal K, Štěpánek R (1999) Macro-molecules 32:5872Google Scholar
  181. 181.
    Baur ME, Stockmayer WH (1965) J Chem Phys 43:4319Google Scholar
  182. 182.
    Adachi K, Kotaka T (1993) Progr Polym Sci 18:58Google Scholar
  183. 183.
    Strobl G (1996) The physics of polymers. Springer, Berlin Heidelberg New YorkGoogle Scholar
  184. 184.
    de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University, Ithaca, NYGoogle Scholar
  185. 185.
    Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, Oxford, UKGoogle Scholar
  186. 186.
    It should be noted that the mode with p = 2 leaves the end-to-end vector invariantGoogle Scholar
  187. 187.
    Adachi K, Kotaka T (1985) Macromolecules 16:466Google Scholar
  188. 188.
    Boese D, Kremer F (1990) Macromolecules 23:829Google Scholar
  189. 189.
    Fleischer G, Appel M (1995) Macromolecules 28:7281Google Scholar
  190. 190.
    Rittig F, Fleischer G, Papadakis C, Schönhals A (2002) Macromolecules. To be publishedGoogle Scholar
  191. 191.
    Hinze G, Böhmer R, Diezemann G, Sillescu H (1998) J Magn Reson 131:218Google Scholar
  192. 192.
    e.g., Rose ME (1957) Theory of angular momentum. Wiley, London, p 57Google Scholar
  193. 193.
    Note that the factors \( \frac{{25}}{{29}} \) and \( \frac{4}{{29}} \) given in Eq. (3) of [85] (rather than \( \frac{5}{9} \) and \( \frac{4}{9} \), cf. Appendix 17.2) are obviously due to a misprintGoogle Scholar
  194. 194.
    Moynihan CT, Boesch LP, Laberge NL (1973) Phys Chem Glasses 14:122Google Scholar
  195. 195.
    Callaghan PT, Coy A, MacGowan D, Packer KJ, Zelaya FO (1991) Nature 351:467Google Scholar
  196. 196.
    Kudlik A, Tschirwitz C, Benkhof S, Blochowicz T, Rössler E (1997) Europhys Lett 40:649Google Scholar
  197. 197.
    Döß A, Paluch M, Sillescu H, Hinze G (2002) Phys Rev Lett 88:095701Google Scholar
  198. 198.
    Pavlatou EA, Rizos AK, Papatheodorou GN, Fytas G (1991) J Chem Phys 94:224Google Scholar
  199. 199.
    Böhmer R, Sanchez E, Angell CA (1992) J Phys Chem 96:9089Google Scholar
  200. 200.
    Appel M, Fleischer G, Kärger J, Chang I, Fujara F, Schönhals A (1997) Colloid Polym Sci 275:187Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • R. Böhmer
  • F. Kremer

There are no affiliations available

Personalised recommendations