Advertisement

Principles and Applications of Pulsed Dielectric Spectroscopy and Nonresonant Dielectric Hole Burning

  • R. Böhmer
  • G. Diezemann

Abstract

Nowadays dielectric relaxation measurements can be carried out almost routinely in broad frequency ranges continuously covering ten to fifteen decades and more [1. This allows one to track the time scale on which dipolar motions occur in a wide temperature interval and to investigate in detail the shape of permittivity and dielectric loss spectra. Early on it has become clear that at a given temperature and pressure the molecular motion in most dielectric materials cannot be characterized by a unique time constant. In order to describe the experimentally observed relaxations intrinsic non-exponential as well as distributed processes have been considered. For a long time the distribution concept was quite popular in the description of dielectric phenomena [2–[4]. It was often based on the assumption that environments differing from site to site lead to locally varying time constants. However, the alternative option which starts from the consideration of nonexponential responses [5] has also gained considerable attention [6]–[9]. To justify these approaches theoretically it has been pointed out that the interactions which exist between dipolar molecules should render a description in terms of a simple distribution of relaxation times at least questionable.

Keywords

Chem Phys Propylene Carbonate Supercooled Liquid Double Well Potential Hole Burning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Contemp Phys 41:15 (see also Chaps. 2, 4, and 5)Google Scholar
  2. 2.
    Wagner KW (1913) Ann Phys (Leipzig) 40:817Google Scholar
  3. 3.
    Cole KS, Cole RH (1941) J Chem Phys 9:341Google Scholar
  4. 4.
    Böttcher CJF, Bordewijk P (1973) Theory of electric polarization, vol 2. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Kohlrausch R (1854) Pogg Ann Phys 91:179Google Scholar
  6. 6.
    Williams G, Cook M, Hains PJ (1972) J Chem Soc Faraday Trans II 68:1045Google Scholar
  7. 7.
    Ngai KL (1979) Comments Solid State Phys 9:127Google Scholar
  8. 8.
    Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press, LondonGoogle Scholar
  9. 9.
    Palmer G, Stein D, Abrahams E, Anderson PW (1984) Phys Rev Lett 53:958Google Scholar
  10. 10.
    Poole PH (1998) Curr Opin Solid State Mater Sci 3:391Google Scholar
  11. 11.
    Kob W (1999) J Phys Condensed Matter 11:R85Google Scholar
  12. 12.
    Schmidt-Rohr K, Spiess HW (1991) Phys Rev Lett 66:3020Google Scholar
  13. 13.
    Böhmer R, Hinze G, Diezemann G, Geil B, Sillescu H (1996) Europhys Lett 36:55Google Scholar
  14. 14.
    Cicerone MT, Ediger MD (1995) J Chem Phys 103:5684; Ediger MD (2000) Annu Rev Phys Chem 51:99Google Scholar
  15. 15.
    Richert R (1997) J Phys Chem B 101:6323 (see also Chap. 15)Google Scholar
  16. 16.
    Schiener B, Böhmer R, Loidl A, Chamberlin RV (1996) Science 274:752Google Scholar
  17. 17.
    Vidal Russell E, Israeloff NE, Walther LE, Alvarez Gomariz H (1998) Phys Rev Lett 81: 1461Google Scholar
  18. 18.
    Vidal Russell E, Israeloff NE (2000) Nature 408:695Google Scholar
  19. 19.
    Chamberlin RV (1998) Phase Trans 65:169Google Scholar
  20. 20.
    Chamberlin RV (2002) ACS Sym Ser 820:228Google Scholar
  21. 21.
    Bloembergen N, Purcell EM, Pound RV (1948) Phys Rev 73:679Google Scholar
  22. 22.
    Friedrich J, Haarer D (1984) Angew Chem 96:96 [Angew Chem Int Ed Engl 23:113]; Friedrich J, Haarer D (1988) In: Moerner WE (ed) Persistent spectral hole burning: science and applications. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. 23.
    Basché T, Moerner WE, Orrit M, Wild UP (eds) (1997) Single-molecule optical detection, imaging and spectroscopy. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Böhmer R, Chamberlin RV, Diezemann G, Geil B, Heuer A, Hinze G, Kuebler SC, Richert R, Schiener B, Sillescu H, Spiess HW, Tracht U, Wilhelm M (1998) J Non-Cryst Solids 235/237:1Google Scholar
  25. 25.
    Williams G (1978) Chem Soc Rev 7:89Google Scholar
  26. 26.
    For a definition of the Poisson bracket see, e.g., Chap. X of [4]Google Scholar
  27. 27.
    Rajagopal AK, Ngai KL, Rendell RW, Teitler S (1988) Physica 149A:358Google Scholar
  28. 28.
    Fournier J, Williams G (1996) J Chem Phys 104:5690 and references cited thereinGoogle Scholar
  29. 29.
    Chamberlin RV (1993) Phys Rev B 48:15,638Google Scholar
  30. 30.
    Böhmer R, Schiener B, Hemberger J, Chamberlin RV (1995) Z Phys B Condensed Matter 99:91; Böhmer R, Schiener B, Hemberger J, Chamberlin RV (1996) Z Phys B Condensed Matter 99:624Google Scholar
  31. 31.
    Schiener B, Chamberlin RV, Diezemann G, Böhmer R (1997) J Chem Phys 107:7746Google Scholar
  32. 32.
    Cole RH (1981) In: Goodman CHL (ed) Inst Phys Conf Series 58:1Google Scholar
  33. 33.
    Madden PA, Kivelson D (1984) Adv Chem Phys 56:467Google Scholar
  34. 34.
    van Kampen NG (1981) Stochastic processes in physics and chemistry. North Holland Publishing Company, AmsterdamGoogle Scholar
  35. 35.
    Diezemann G, Sillescu H (1999) J Chem Phys 111:1126Google Scholar
  36. 36.
    Debye P (1929) Polare Molekeln. S. Hirzel, Leipzig, chap VGoogle Scholar
  37. 37.
    Böhmer R, Diezemann G, Hinze G, Rössler E (2001) Prog NMR Spectrosc 39:191 and references cited therein; Böhmer R, Kremer F (2002) Broadband dielectric spectroscopy. Springer, Berlin Heidelberg New York, chap 17Google Scholar
  38. 38.
    Rosato V, Williams G (1981) Faraday Trans II 77:1761Google Scholar
  39. 39.
    Kozak A, Williams G (1989) Mol Phys 67:1065Google Scholar
  40. 40.
    Beevers MS, Crossley J, Garrington DC, Williams G (1976) J Chem Soc Faraday II 72:1482Google Scholar
  41. 41.
    Anderson JE (1972) Faraday Symp Chem Soc 6:82Google Scholar
  42. 42.
    Fröhlich H (1949) Theory of dielectrics. Oxford University Press, New YorkGoogle Scholar
  43. 43.
    Note that ADWPs have also been used in the context of the frequency-dependent conductivity in glasses; see, e.g., Pollak M, Pike GE (1972) Phys Rev Lett 28:1449Google Scholar
  44. 44.
    Wagner A, Kliem H (1999) J Chem Phys 111:1043Google Scholar
  45. 45.
    Anderson JE, Ullman R (1967) J Chem Phys 47:2178Google Scholar
  46. 46.
    Stannarius R,Kremer F,Arndt M (1995) Phys Rev Lett 75:4698Google Scholar
  47. 47.
    Böttcher CJF (1973) Theory of electric polarization, vol 1. Elsevier, AmsterdamGoogle Scholar
  48. 48.
    Morita A (1986) Phys Rev A 34:1499Google Scholar
  49. 49.
    Alexiewicz W, Derdowska-Zimpel H (1995) Physica A 214:9Google Scholar
  50. 50.
    Déjardin JL, Debiais G (1995) Adv Chem Phys 91:241Google Scholar
  51. 51.
    Diezemann G (2001) Europhys Lett 53:604Google Scholar
  52. 52.
    Diezemann G (to be submitted) J Chem PhysGoogle Scholar
  53. 53.
    Kircher O, Chamberlin RV, Diezemann G, Böhmer R (2000) J Chem Phys 113:6449Google Scholar
  54. 54.
    Mills DL (1991) Nonlinear optics: basic concepts. Springer, Berlin Heidelberg New YorkGoogle Scholar
  55. 55.
    Glazounov AE, Tagantsev AK (2000) Phys Rev Lett 85:2192Google Scholar
  56. 56.
    Diezemann G, Sillescu H, Hinze G, Böhmer R (1998) Phys Rev E 57:4398Google Scholar
  57. 57.
    Sillescu H (1999) J Non-Cryst Solids 243:81Google Scholar
  58. 58.
    Chamberlin RV, Schiener B, Böhmer R (1997) Mat Res Soc Symp Proc 455:117Google Scholar
  59. 59.
    Rather than expressing the change in properties that depend on Boltzmann factors, exp(–B/k B T), by modified (fictive, effective) temperatures T in some cases modified energy barriers B may be preferableGoogle Scholar
  60. 60.
    Baschnagel J, Binder K, Wittmann HP (1993) J Phys C 5:1597Google Scholar
  61. 61.
    Moynihan CT (1998) Solid State Ionics 105:175Google Scholar
  62. 62.
    Nieuwenhuizen TM (1998) Phys Rev Lett 80:5580Google Scholar
  63. 63.
    For a review, see Hodge IM (1994) J Non-Cryst Solids 169:211Google Scholar
  64. 64.
    Adam G, Gibbs JH (1965) J Chem Phys 28:373Google Scholar
  65. 65.
    Moynihan CT, Schroeder J (1993) J Non-Cryst Solids 160:52Google Scholar
  66. 66.
    Donth E (1982) J Non-Cryst Solids 53:325; Donth E (1999) Acta Polym 50:240Google Scholar
  67. 67.
    Chamberlin RV (1999) Phys Rev Lett 82:2520; see also Chamberlin RV (2000) Nature 408:337Google Scholar
  68. 68.
    Chamberlin RV (1999) Phys Rev Lett 83:5134Google Scholar
  69. 69.
    Chamberlin RV (private communication)Google Scholar
  70. 70.
    Kircher O, Schiener B, Böhmer R (1998) Phys Rev Lett 81:4520Google Scholar
  71. 71.
    Sawyer CB, Tower CH (1930) Phys Rev 35:269Google Scholar
  72. 72.
    Wagner H, Richert R (1999) J Appl Phys 85:1750Google Scholar
  73. 73.
    Kircher O, Wirsch C, Böhmer R (unpublished)Google Scholar
  74. 74.
    Cugliandolo LF, Iguain JL (2000) Phys Rev Lett 85:3448Google Scholar
  75. 75.
    Diezemann G, Böhmer R (2001) Phys Rev Lett; 87:129602Google Scholar
  76. 76.
    Richert R, Böhmer R (1999) Phys Rev Lett 83:4337Google Scholar
  77. 77.
    Böhmer R, Ngai KL, Angell CA, Plazek DJ (1993) J Chem Phys 99:4201Google Scholar
  78. 78.
    Hanaya M, Nakayama M, Hatate A, Oguni M (1995) Phys Rev B 52:3234 and references cited thereinGoogle Scholar
  79. 79.
    Mizukami M, Fujimori H, Oguni M (1996) Solid State Commun 100:83Google Scholar
  80. 80.
    Wu L (1991) Phys Rev B 43:9906Google Scholar
  81. 81.
    Hemberger J, Böhmer R, Loidl A (1998) Phase Trans 65:233Google Scholar
  82. 82.
    Schiener B, Böhmer R (1995) J Non-Cryst Solids 182:180 and references cited thereinGoogle Scholar
  83. 83.
    Angell CA, Boehm L, Oguni M, Smith DL (1993) J Mol Liq 56:275; Takahara S, Yamamuro O (1995) J Phys Chem 99:9589Google Scholar
  84. 84.
    Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions. Dover Publications, New YorkGoogle Scholar
  85. 85.
    Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW (1998) Phys Rev Lett 81:2727Google Scholar
  86. 86.
    From a mathematical viewpoint Δ(t) vanishes in the limits of times that are very much shorter or very much longer than the mean correlation time. With finite signal to noise ratios these time regimes are not expected to be accessible experimentallyGoogle Scholar
  87. 87.
    Schiener B, Böhmer R (unpublished)Google Scholar
  88. 88.
    Johari GP, Goldstein M (1970) J Chem Phys 53:2372Google Scholar
  89. 89.
    Schnauss W, Fujara F, Hartmann K, Sillescu H (1990) Chem Phys Lett 166:381. For references to more recent work see Böhmer R, Hinze G, Jörg T, Qi F, Sillescu H (2000) J Phys Condensed Matter 12:A383Google Scholar
  90. 90.
    Wagner H, Richert R (1998) J Non-Cryst Solids 242:19Google Scholar
  91. 91.
    Richert R (2001) Europhys Lett 54:767Google Scholar
  92. 92.
    Wagner H, Richert R (1999) J Phys Chem B 103:4071Google Scholar
  93. 93.
    Olsen NB (1998) J Non-Cryst Solids 235/237:399Google Scholar
  94. 94.
    Blochowicz T, Rössler E (unpublished)Google Scholar
  95. 95.
    Angell CA, Dworkin A, Figuière P, Fuchs A, Szwarc H (1985) J Chim Phys 82:773Google Scholar
  96. 96.
    Loidl A, Böhmer R (1994) In: Richert R, Blumen A (eds) Disorder effects on relaxa-tional processes. Springer, Berlin Heidelberg New York, p 659 and references cited thereinGoogle Scholar
  97. 97.
    Jiménez-Ruiz M, González MA, Bermejo FJ, Miller MA, Birge NO, Cendoya I, Alegría A (1999) Phys Rev B 59:9155Google Scholar
  98. 98.
    Leslie-Pelecky DL, Birge NO (1994) Phys Rev B 50:13,250Google Scholar
  99. 99.
    Brand R, Lunkenheimer P, Loidl A (1997) Phys Rev B 56:R5713Google Scholar
  100. 100.
    Dyre JC (1988) J Appl Phys 64:2456; Proceedings of the International Conference on Structure and Dynamics of Ionic Glasses: Experiments, Models and Applications [(1998) Solid State Ionics 105].Google Scholar
  101. 101.
    Dyre JC, Schrøder TB (2000) Rev Mod Phys 72:873 and references cited thereinGoogle Scholar
  102. 102.
    Moynihan CT (1998) J Non-Cryst Solids 235/237:781Google Scholar
  103. 103.
    Angell CA (1990) Chem Rev 90:523Google Scholar
  104. 104.
    Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) J Phys Chem 78:631Google Scholar
  105. 105.
    Pimenov A, Lunkenheimer P, Rall H, Kohlhaas R, Loidl A, Böhmer R (1996) Phys Rev E 54:676Google Scholar
  106. 106.
    Lunkenheimer P, Pimenov A, Loidl A (1997) Phys Rev Lett 78:2995 and references cited thereinGoogle Scholar
  107. 107.
    Pimenov A, Loidl A, Böhmer R (1997) J Non-Cryst Solids 212:89Google Scholar
  108. 108.
    Machavariani VS, Voronel A (2000) Phys Rev E 61:2121Google Scholar
  109. 109.
    Sen S, Stebbins JF (1997) Phys Rev Lett 78:3495Google Scholar
  110. 110.
    Zürn C, Titze A, Diezemann G, Böhmer R (1999) J Phys Chem B 103:4109Google Scholar
  111. 111.
    Roling B, Martiny C, Funke K (1999) J Non-Cryst Solids 249:201Google Scholar
  112. 112.
    Isard JO (1996) J Non-Cryst Solids 202:137Google Scholar
  113. 113.
    Barton JL (1996) J Non-Cryst Solids 203:280Google Scholar
  114. 114.
    Roling B (private communication)Google Scholar
  115. 115.
    Xu Z, Stebbins JF (1995) Science 270:1332Google Scholar
  116. 116.
    Böhmer R, Jörg T, Qi F, Titze A (2000) Chem Phys Lett 316:417Google Scholar
  117. 117.
    Höchli UT, Knorr K, Loidl A (1990) Adv Phys 39:405Google Scholar
  118. 118.
    Korner N, Pfammatter C, Kind R (1993) Phys Rev Lett 70:1283Google Scholar
  119. 119.
    Levstik A, Kutnjak Z, Filipic C, Pirc R (1998) Phys Rev B 57:11,204Google Scholar
  120. 120.
    Kutnjak Z, Filipic C, Pirc R, Levstik A, Farhi R, El Marssi M (1999) Phys Rev B 59:294Google Scholar
  121. 121.
    Kleemann W, Albertini A, Chamberlin RV, Bednorz JG (1997) Europhys Lett 37:145Google Scholar
  122. 122.
    Cross LE (1994) Ferroelectrics 151:305 and references cited thereinGoogle Scholar
  123. 123.
    Uchino K (1994) In: Swain MV (ed) Materials science and technology, vol 11: structure and properties of ceramics.VCH, Weinheim, p 635Google Scholar
  124. 124.
    Kircher O, Diezemann G, Böhmer R (2001) Phys Rev B 64:054,103Google Scholar
  125. 125.
    Kleemann W, Bobnar V, Dec J, Lehnen P, Pankrath R, Prosandeev SA (2001) Ferroelectrics 261:43Google Scholar
  126. 126.
    El Goresy T, Kircher O, Böhmer R (2002) Solid State Commun 121:485Google Scholar
  127. 127.
    Koper JM, Hilhorst HJ (1988) J Phys (France) 49:429Google Scholar
  128. 128.
    Tracht U, Heuer A, Spiess HW (1998) J Non-Cryst Solids 235/237:27Google Scholar
  129. 129.
    Struik LCE (1978) Physical ageing in amorphous polymers and other materials. Elsevier, AmsterdamGoogle Scholar
  130. 130.
    Grigera TS, Israeloff NE (1999) Phys Rev Lett 83:5038Google Scholar
  131. 131.
    McKenna GB, Zapas LJ (1986) Polym Eng Sci 26:725Google Scholar
  132. 132.
    Yee AF, Bankert RJ, Ngai KL, Rendell RW (1988) J Polym Sci Polym Phys Ed 26:2463Google Scholar
  133. 133.
    Waldron WK Jr, McKenna GB (1995) J Rheol 39:471Google Scholar
  134. 134.
    Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworth, BostonGoogle Scholar
  135. 135.
    Jones P, Darcy P, Attard GS, Jones WJ, Williams G (1989) Mol Phys 67:1053Google Scholar
  136. 136.
    Jones P, Jones WJ, Williams G (1990) J Chem Soc Faraday Trans 86:1013Google Scholar
  137. 137.
    Cicerone MT, Ediger MD (1993) J Phys Chem 97:10,489Google Scholar
  138. 138.
    Kanetakis J, Sillescu H (1996) Chem Phys Lett 252:127Google Scholar
  139. 139.
    Beevers MS, Elliott DA, Williams G (1980) J Chem Soc Faraday II 76:112Google Scholar
  140. 140.
    Torre R, Bartolini P, Pick RM (1998) Phys Rev E 57:1912Google Scholar
  141. 141.
    Arbe A, Colmenero J, Monkenbusch M, Richter D (1998) Phys Rev Lett 81:590Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • R. Böhmer
  • G. Diezemann

There are no affiliations available

Personalised recommendations