Advertisement

Non-Conforming hp Finite Element Methods for Stokes Problems

  • Faker Ben Belgacem
  • Lawrence K. Chilton
  • Padmanabhan Seshaiyer
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 23)

Abstract

In this paper, we present a non-conforming hp finite element formulation for the Stokes boundary value problem for viscous incompressible fluid flow in primal velocity-pressure variables. Within each subdomain the local approximation is designed using div-stable hp-mixed finite elements. We demonstrate via numerical experiments that the non-conforming method is optimal for various h, p and hp discretizations, including the case of exponential hp convergence over geometric meshes.

Keywords

Finite Element Method Stokes Problem Radical Mesh Optimal Convergence Rate Reentrant Corner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ainsworth M. and Senior B. (1999) hp-Finite Element Procedures on Non-Uniform Geometric Meshes: Adaptivity and Constrained Approximation. Grid Generation and Adaptive Algorithms. M. W. Bern and J. E. Flaherty and M. Luskin (eds.), IMA, Minnesota, 113, 1–29.CrossRefGoogle Scholar
  2. 2.
    Babuška I. and Suri M. (1994) The p and hp versions of the Finite Element Method: Basic Principles and Properties. SIAM Review, 36, 578–632.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Babuška I. and Suri M. (1987) The optimal convergence rate of the p-version of the finite element method. SIAM J. Numer. Anal., 24, 750–776.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ben Belgacem F. (1999) The mortar finite element method with Lagrange Multipliers. Numer. Math. 84, 173–197.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Ben Belgacem F. (2000) The mixed mortar finite element method for the incompressible Stokes equations: Convergence Analysis. SIAM J. Numer. Anal., 37, 1085–1100.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ben Belgacem F., Bernardi C., Chofri N. and Maday Y. (2000) Inf-sup condition for the mortar spectral element discretization for the Stokes problem. Numer. Math., 85, 257–281.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ben Belgacem F., Chilton L. K. and Seshaiyer P. (2001) The hp mortar finite element method for the mixed elasticity and stokes problems. Comp. Math. Appl., accepted and to appear.Google Scholar
  8. 8.
    Ben Belgacem F., Seshaiyer P. and Suri M. (2000) Optimal convergence rates of hp mortar finite element methods for second-order elliptic problems. RAIRO Math. Mod. Numer. Anal., 34, 591–608.zbMATHCrossRefGoogle Scholar
  9. 9.
    Bernardi C. and Maday Y. (1999) Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Mod. Meth. Appl. Sci., 49, 395–414.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bernardi C., Maday Y., and Patera A. T. (1993) Domain decomposition by the mortar element method. In Asymptotic and Numerical Methods for PDEs with Critical Parameters. H. G. Kaper and M. Garbey, (eds.) NATO Adv. Sci. Inst. Ser. C Math. Phs. Sci. 384, Kluwer, 269–286.Google Scholar
  11. 11.
    Brezzi F. and Fortin M. (1991). Mixed and Hybrid Finite Element Methods. Springer Verlag, New York, Springer Series in Computational Mathematics, 15.zbMATHCrossRefGoogle Scholar
  12. 12.
    Ciarlet P. G. (1978) The Finite Element Method for Elliptic Problems. North Holland, Amsterdam.zbMATHGoogle Scholar
  13. 13.
    Crouzeix M. and Thoměe V. (1987) The stability in L p and W 1,p of the L 2 Projection on finite element function spaces. Math. Comp., 48, 521–532.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Girault V. and Raviart P. A. (1980) Finite Element Methods for Navier-Stokes Equations, Springer Verlag.Google Scholar
  15. 15.
    Gui W. and Babuška I. (1986) The hp version of the finite element method in one dimension. Numer. Math., 3, 577–657.CrossRefGoogle Scholar
  16. 16.
    Guo B. and Babuška I. (1986) The hp version of the finite element method. Comput. Mech., 1, 21–41 (Part I) 203–220 (Part II).zbMATHCrossRefGoogle Scholar
  17. 17.
    Schwab C. and Suri M. (1996) The p and hp versions of the finite element method for problems with boundary layers. Math. Comp., 65, 1403–1429.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Seshaiyer P. (1998) Non-conforming hp finite element methods. Ph. D. Dissertation, University of Maryland, Baltimore County.Google Scholar
  19. 19.
    Seshaiyer P. and Suri M. (1998) Convergence results for non-conforming hp methods: The mortar finite element method. Contemp. Math. 218, 467–473.MathSciNetGoogle Scholar
  20. 20.
    Seshaiyer P. and Suri M. (2000) Uniform hp convergence results for the mortar finite element method. Math. Comp. 69, 521–546MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Seshaiyer P. and Suri M. (2000) hp submeshing via non-conforming finite element methods. Comp. Meth. Appl. Mech. Engrg., 189, 1011–1030.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Seshaiyer P. (2001) Stability and convergence of non-conforming hp finite element methods. Comp. Math. Appl., accepted and to appear.Google Scholar
  23. 23.
    Verfurth R. (1996) A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Chichester-Stuttgart.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Faker Ben Belgacem
    • 1
  • Lawrence K. Chilton
    • 2
  • Padmanabhan Seshaiyer
    • 3
  1. 1.Mathématiques pour l’Industrie et la PhysiqueUniversité Paul SabatierToulouse Cedex 04France
  2. 2.Department of Mathematics and StatisticsAir Force Institute of TechnologyUSA
  3. 3.Department of Mathematics and StatisticsTexas Tech UniversityLubbockUSA

Personalised recommendations