Advertisement

Survey of Multi-Scale Meshfree Particle Methods

  • Lucy T. Zhang
  • Wing K. Liu
  • Shao F. Li
  • Dong Qian
  • Su Hao
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 26)

Abstract

A multiscale meshfree particle method is developed, which includes recent advances in SPH and other meshfree research efforts. Key features will include linear consistency, stability, and both local and global conservation properties. In addition, through the incorporation of Reproducing Kernal Particle Method (RKPM), standard moving least squares (MLS) enhancement and wavelet techniques, the method have the flexibility of resolving multiple scales in the solution of complex, multiple physics processes. We present the application of this approach in the following areas: 1) simulations on propagation of dynamic fracture and shear band; 2) impact and penetration; 3) fluid dynamics and 4) nano-mechanics.

Keywords

Shear Band Particle Method Move Little Square Meshfree Method Shear Band Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bar-Lev and H.T. Yang. Initial flow field over an impulsively started circular cylinder. Journal of Fluid Mechanics, 72:625–647, 1975.CrossRefGoogle Scholar
  2. 2.
    T. Belytschko and T. Tabbara. Dynamic fracture using efg. IJNME, 39:3, 1996.CrossRefGoogle Scholar
  3. 3.
    J.S. Chen, C. Pan, C.T. Wu, and W.K. Liu. Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Computer Methods in Applied Mechanics and Engineering, 139:195–227, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    W.M. Collins and S.C.R. Dennis. The initial flow past an impulsively started circular cylinder. Quarterly Journal of Mechanics and Applied Mathematics, 26:53–75, 1973a.zbMATHCrossRefGoogle Scholar
  5. 5.
    W.M. Collins and S.C.R. Dennis. Flow past an impulsively started circular cylinder. Journal of Fluid Mechanics, 60:105–127, 1973b.zbMATHCrossRefGoogle Scholar
  6. 6.
    S. Hao, W.K. Liu, P. Klein, and D. Qian. Multi-scale damage model, manuscript to be submitted, 2001.Google Scholar
  7. 7.
    S. Hao, H. Park, and W.K. Liu. Moving particle finite element method, submitted, 2001.Google Scholar
  8. 8.
    S. Jun, W.K. Liu, and T. Belytschko. Explicit reproducing kernel particle methods for large deformation problems. International Journal for Numerical Methods in Engineering, 41:137–166, 1998.zbMATHCrossRefGoogle Scholar
  9. 9.
    J.F. Kalthoff and S. Winkler. Failure mode transition at high rates of shear loading. C. Y. Chiem, H.D. Kunze and L. W. Meyer, edts., Impact Loading and Dynamic Behavior of Materials, 1:185–195, 1987a.Google Scholar
  10. 10.
    P.A. Klein. Technical Report. Sandia National Laboratories, 1999.Google Scholar
  11. 11.
    S. Li and W.K. Liu. Meshfree and particle methods and their applications. accepted for publication in Applied Mechanics Review, 2001.Google Scholar
  12. 12. S. Li, W.K. Liu, D. Qian, P. Guduru, and R. Rosakis. Dynamic shear band propogation and micro-structure of adiabatic shear band. Comp. Meth. In Applied Mech. Engrg, in press, 2001.Google Scholar
  13. 13.
    S. Li, W.K. Liu, A. Rosakis, T. Belytschko, and W. Hao. Meshfree galerkin simulations of dynamic shear band propagation and failure mode transition. accepted for publication in Journal of Mechanics and Physics of Solids, 2000.Google Scholar
  14. 14.
    W.K. Liu and Y. Chen. Wavelet and multiple scale reproducing kernel methods. International Journal for Numerical Methods in Engineering, 21:901-931, 1995.zbMATHCrossRefGoogle Scholar
  15. 15.
    W.K. Liu, Y. Chen, R.A. Uras, and C.T. Chang. Generalized multiple scale reproducing kernel particle methods. Computer Methods in Applied Mechanics and Engineering, 139:91–158, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    W.K. Liu and S. Jun. Multiple scale reproducing kernel particle methods for large deformation problems. International Journal for Numerical Methods in Engineering, 41:1339–1362, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    W.K. Liu, S. Jun, J. Adee, and T. Belytschko. Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, 38:1655–1680, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    W.K. Liu, S, Jun, D.T. Sihling, Y. Chen, and W. Hao. Multiresolution reproducing kernel particle method for computational fluid dynamics. International Journal of Numerical Method in Fluids, 24:1391–1415, 1997.zbMATHCrossRefGoogle Scholar
  19. 19.
    W.K. Liu, S. Jun, and Y.F. Zhang. Reproducing kernel particle methods. International Journal for Numerical Methods in Engineering, 20:1081-1106, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    W.K. Liu, R.A. Uras, and Y. Chen. Enrichment of the finite element method with the reproducing kernel particle method. Journal of Applied Mechanics, ASME, 64:861–870, 1997.zbMATHCrossRefGoogle Scholar
  21. 21.
    J.J. Mason, A.J. Rosakis, and G. Ravinchandran. Full field measurement of the dynamic deformation field around a growing adiabatic shear band at the tip of a dynamically loaded crack or notch. Journal of Mechanics and Physics of Solids, 42:1679–1697, 1994.CrossRefGoogle Scholar
  22. 22.
    D. Qian, W.K. Liu, and R.S. Ruoff. Mechanics of nanotubes filled with fullerenes. accepted for publication in Journal of Physical Chemistry B, 2001.Google Scholar
  23. 23.
    K. Ravi-Chandar. On the failure mode transition in polycarbonate dynamic mixed-mode loading. International Journal of Solids and Structures, 32:925–938, 1995.zbMATHCrossRefGoogle Scholar
  24. 24.
    A.J. Rosakis. Private communication. 2000,Google Scholar
  25. 25.
    J. Sloan, R.E. Dunin-Borkowski, J.L. Hutchinson, K.S. Coleman, V.C. Williams, J.B. Claridge, A.P.E. York, C. Xu, S.R. Bailey, G. Brown, S. Fridrichs, and M.L.H. Green. The size distribution, imaging and obstructing properties of c60 and higher fullerenes formed within arc-growth single walled carbon nanotubes. Chemical Physics Letters, 316:191–198, 2000.CrossRefGoogle Scholar
  26. 26.
    B.W. Smith, M. Monthoux, and D.E. Luzzi. Encapsulated c60 in carbon nanotubes. Nature, 336:323, 1998.CrossRefGoogle Scholar
  27. 27.
    G. J. Wagner and W.K. Liu. Application of essential boundary conditions in mesh-free methods: a corrected collocation method. International Journal for Numerical Methods in Engineering, 47:1367–1379, 2000.zbMATHCrossRefGoogle Scholar
  28. 28.
    G.J. Wagner and W.K. Liu. Hierachical enrichment for bridging scales and meshfree boundary conditions. International Journal for Numerical Methods in Engineering, 50:507–524, 2000.CrossRefGoogle Scholar
  29. 29.
    M.F. Yu, M.J. Dyer, D. Qian, W.K. Liu, and R.S. Ruoff. Locked twist in multi-walled carbon nanotube ribbons, accepted for publication in Physical Review B, Rapid Communications, 2001.Google Scholar
  30. 30.
    L.T. Zhang, G.J. Wagner, and W.K. Liu. A parallelized meshfree method with boundary enrichment for large-scale cfd. submitted to Journal of Computational Physics, 2000.Google Scholar
  31. 31.
    Y. Zhang, S. Iijima, Z. Shi, and Z. Gu. Defects in arc-discharg-produced single-walled carbon nanotubes. Philosophical Magazine Letters, 79:473–479, 1999.CrossRefGoogle Scholar
  32. 32.
    M. Zhou, A.J. Rosakis, and G. Ravichandran. Dynamically propagating shear bands in impact-loaded prenotched plates -i, experimental investigations of temperature signatures and propagation speed. Journal of Mechanics of Physics and Solids, 44:981–1006, 1996a.CrossRefGoogle Scholar
  33. 33.
    M. Zhou, A.J. Rosakis, and G. Ravichandran. Dynamically propagating shear bands in impact-loaded prenotched plates -ii, numerical simulations. Journal of Mechanics of Physics and Solids, 44:1007–1032, 1996b.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Lucy T. Zhang
    • 1
  • Wing K. Liu
    • 1
  • Shao F. Li
    • 2
  • Dong Qian
    • 1
  • Su Hao
    • 1
  1. 1.Northwestern UniversityEvanstonUSA
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations