Advertisement

The SPH/MLSPH Method for the Simulation of High Velocity Concrete Fragmentation

  • Timon Rabczuk
  • Josef Eibl
  • Lothar Stempniewski
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 26)

Abstract

The topic of this paper is the application of the SPH/MLSPH-method to high velocity concrete fragmentation. After a short review of the SPH/MLSPH method, a beam under static concentric loading and linear elastic material behavior is considered to show the advantage of MLSPH in opposite to SPH. A constitutive law for concrete taking into account the dynamic strength increase under high velocity loading is briefly proposed. Finally, the application of the SPH/MLSPH-Code in conjunction with this constitutive law for concrete onto two concrete slabs under contact detonation is discussed. The SPH and MLSPH-results obtained with different particle number and smoothing lengths are compared with the experimental results.

Keywords

Particle Number Concrete Slab Smooth Particle Hydrodynamic Wave Propagation Problem Plane Wave Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belytschko T. et al.: On the completeness of Meshfree Particle Methods, International Journal of Numerical Methods in Engineering 43 (1998), 785–819MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Dilts G.A.: Moving Least Squares Particle Hydrodynamics I: Consistency and Stability, Int. J. Numer. Meth. Engng. 44 (1999), 1115–1155MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Dilts G.A.: Moving Least Squares Particle Hydrodynamics II: Conservation and Boundaries, Int. J. Numer. Meth. Engng. (2000), 1503–1524Google Scholar
  4. 4.
    Dilts G.A.: Some recent developments for Moving-Least-Squares Particle Methods, First M.I.T. Conference on Computational Fluid and Solid Mechanics, June 12–14, 2001, Preprint, Massachusetts Institute of Technology, Cambridge, MA 02138 USAGoogle Scholar
  5. 5.
    Herrmann N.: Dissertation in Vorbereitung, Institut fr Massivbau und Baustofftechnologie, Universitt KalrsruheGoogle Scholar
  6. 6.
    Johnson G.R. et al.: A generalized particle algorithm for high velocity impact computations, Computational Mechanics, 25 (2000), 245–256zbMATHCrossRefGoogle Scholar
  7. 7.
    Johnson G.R. et al.: Normalized Smoothing functions for SPH Impact Computations, Int. J. Numer. Meth. Engng. 38 (1996), 2725–2741CrossRefGoogle Scholar
  8. 8.
    Monoghan J.J.: Extrapolating B Splines for Interpolation, Journal of Physics, 60 (1985), 253–262Google Scholar
  9. 9.
    Monaghan J.J.: Kernel Estimates as a Basis for General Particle Methods in Hydrodynamics, Journal of Computational Physics, 46 (1982), 429–453MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ockert J.: Ein Stoffgesetz für die Schockwellenausbreitung in Beton, Dissertation, Institut für Massivbau, Universität Karlsruhe, 1997Google Scholar
  11. 11.
    Randies P.W. et al.: Recent improvements in SPH Modeling of Hypervelocity Impact, Int. J. Impact Engng. 20 (1997), 525–532CrossRefGoogle Scholar
  12. 12.
    Sauer N et al.: Modeling Penetration Events using FE/MLSPH Adaptive Coupling, Sixth Congress on Computational Mechanics, 1–4 August 2001, Dearborn, Michigan, USAGoogle Scholar
  13. 13.
    Scheffer N et al.: Improving a SPH code by alternative interpolation schemes, Baustatik-Baupraxis, 7 Meksouris, 1999 Balkems, RotterdamGoogle Scholar
  14. 14.
    Schmidt-Hurtienne B.: Ein dreiaxiales Schädigungsmodell zur Beschreibung des Dehnrateneffektes von Beton, Dissertation, Institut für Massivbau, Universität Karlsruhe, 2000Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Timon Rabczuk
    • 1
  • Josef Eibl
    • 1
  • Lothar Stempniewski
    • 1
  1. 1.Institute of Concrete Structures and Building MaterialsUniversity of KarlsruheKarlsruheGermany

Personalised recommendations